Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Studies of surface two-dimensional photonic band-gap structures

Cross, A W and Konoplev, I V and Phelps, A D R and Ronald, K (2003) Studies of surface two-dimensional photonic band-gap structures. Journal of Applied Physics, 93 (4). pp. 2208-2218. ISSN 0021-8979

[img] PDF (Surface_Photonic_Bandgap_2003_J_Appl_Physics_Cross_et_al)
Surface_Photonic_Bandgap_2003_J_Appl_Physics_Cross_et_al.pdf - Final Published Version

Download (289kB)

Abstract

Two-dimensional (2D) surface photonic band-gap (SPBG) structures can be obtained by providing a shallow corrugation of the inner surface of a waveguide wall. It can be used as a distributed mirror, a cavity, or a filter in integrated optics or microwave electronics. These structures can also be an alternative to conventional 2D PBG or 1D Bragg structures. In this article, we present the results of theoretical and experimental studies of 2D SPBG structures. Data obtained from experiments are compared with theoretical results and good agreement between theory and experiment is demonstrated. Comparison of a coaxial 2D SPBG structure with a conventional 1D Bragg structure is also presented.