Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Kinematic modelling of a robotic gait device for early rehabilitation of walking

Fang, J. and Gollee, H. and Galen, S. and Allan, D. B. and Conway, B. A. and Vuckovic, A. (2011) Kinematic modelling of a robotic gait device for early rehabilitation of walking. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225 (12). pp. 1177-1187. ISSN 0954-4119

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Rehabilitation of walking is an essential element in the treatment of incomplete spinal cord injured (SCI) patients. During the early post injury period, patients find it challenging to practice upright walking. Simulating stepping movements in a supine posture may be easier and promote earlier rehabilitation. A robotic orthotic device for early intervention in spinal cord injury that does not require the patient to be in an upright posture has been modelled. The model comprises a two-bar mechanical system that is configured and powered to provide limb kinematics that approximate normal overground walking. The modelling work has been based on gait analysis performed on healthy subjects walking at 50 per cent, 75 per cent, and 100 per cent of normal cadence. Simulated angles of hip, knee, and ankle joints show a comparable range of motion (ROM) to the experimental walking data measured in healthy subjects. The model provides operating parameters for a prospective recumbent gait orthosis that could be used in early walking rehabilitation of incomplete SCI patients.

Item type: Article
ID code: 40379
Keywords: dynamic simulation, stepping practice, neurological recovery, gait, Pharmacy and materia medica, Mechanical Engineering, Medicine(all)
Subjects: Medicine > Pharmacy and materia medica
Department: Faculty of Engineering > Bioengineering
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 09 Jul 2012 14:12
Last modified: 27 Mar 2014 10:16
URI: http://strathprints.strath.ac.uk/id/eprint/40379

Actions (login required)

View Item