Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes

McDonough, John K. and Frolov, Andrey I. and Presser, Volker and Niu, Junjie and Miller, Christopher H. and Ubieto, Teresa and Fedorov, Maxim V. and Gogotsi, Yury (2012) Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon, 50 (9). pp. 3298-3309. ISSN 0008-6223

Full text not available in this repository. (Request a copy from the Strathclyde author)


Onion-like carbon (OLC), also known as carbon onions, is an attractive material for electrical energy storage in regards to high rate, high power applications. We report the most up to date, systematic, and extensive study of the electrochemical behavior of carbon onions in aqueous (1 M sulfuric acid, H2SO4) and organic (1 M tetraethylammonium tetrafluoroborate, TEA-BF4, and 1 M tetrabutylammonium tetrafluoroborate, TBA-BF4, in acetonitrile) electrolytes. The physical and electrical properties of OLC are studied as a function of the synthesis temperature and compared with diamond soot, carbon black, and activated carbon. To obtain a molecular scale picture of the processes at the OLC-electrolyte interface, we supplement the experimental work with molecular dynamics (MD) simulations of carbon onions in organic electrolytes. The capacitive performance of OLC exceeds other carbon materials at high charge/discharge rates (up to 50 V s(-1); time constant tau similar to 10 ms). OLC produced from detonation soot has a performance similar to that of OLC from highly purified nanodiamond. While OLC produced at 1500 degrees C has the largest specific surface area, OLC produced at 1800 degrees C has the highest conductivity and shows the best capacitive performance at high rates.