
Forward-Chaining Partial-Order Planning

Amanda Coles and Andrew Coles and Maria Fox and Derek Long
Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, UK

email: firstname.lastname@cis.strath.ac.uk

Abstract
Over the last few years there has been a revival of interest in
the idea of least-commitment planning with a number of re-
searchers returning to the partial-order planning approaches
of UCPOP and VHPOP. In this paper we explore the potential
of a forward-chaining state-based search strategy to support
partial-order planning in the solution of temporal-numeric
problems. Our planner, POPF, is built on the foundations
of grounded forward search, in combination with linear pro-
gramming to handle continuous linear numeric change. To
achieve a partial ordering we delay commitment to ordering
decisions, timestamps and the values of numeric parameters,
managing sets of constraints as actions are started and ended.
In the context of a partially ordered collection of actions, con-
structing the linear program is complicated and we propose
an efficient method for achieving this. Our late-commitment
approach achieves flexibility, while benefiting from the infor-
mative search control of forward planning, and allows tempo-
ral and metric decisions to be made — as is most efficient —
by the LP solver rather than by the discrete reasoning of the
planner. We compare POPF with the approach of construct-
ing a sequenced plan and then lifting a partial order from it,
showing that our approach can offer improvements in terms
of makespan, and time to find a solution, in several bench-
mark domains.

1. Introduction
Partial-order planning was, until the late 1990s, the most
widely researched and most popular approach to planning.
A central reason for this is that the least-commitment phi-
losophy, in which decisions about action orderings and pa-
rameter bindings is postponed until a decision is forced,
is an intuitively attractive one. Nevertheless, the last
decade has shown the power of early commitment under
informed heuristic guidance combined with comparatively
much lighter-weight search machinery able to quickly gen-
erate search states and backtrack across alternatives. The
general move towards state space search ignores another im-
portant benefit of partial-order plans: the flexibility in exe-
cution that they offer.

In this paper we explore the extent to which we can pre-
serve the benefits of partial-order plan construction within
the forward search framework. This is motivated by the ob-
servation that the forward search approach can be seen as

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

committing to a sequence of choices of actions, but not nec-
essarily to the order of their application. By reducing the
ordering constraints that are imposed during the construc-
tion of the sequence of action choices we retain elements
of the least-commitment approach and are able to produce
partially-ordered plans with the robustness and flexibility
that they can offer.

In this paper we explore the following questions:
• Can forward search planning be modified to support effi-

cient construction of partially-ordered plans?
• Is it more effective, in terms of time or plan quality, to

construct partial-order plans directly, or to lift partial-
orders from totally ordered plans?

We explore these questions in the context of temporal plan-
ning with numbers and continuous effects. Temporal plan-
ning, in particular, includes problems where partial-order
planning appears to be particularly important, but the inter-
actions between partial-order structures and numeric effects
increases the challenges in achieving effective handling of
the necessary reasoning.

In the remainder of the paper we consider the background
to the problem and then present our approach to solving it.
We describe our implementation of the solution and present
results comparing its performance in various domains with a
partial-order lifting approach applied to the plans produced
by a straightforward forward state-space search approach.

2. Background
Partial-order planning has become unfashionable, largely
due to the remarkable performance gains we have witnessed
in forward state-space search planners over the past decade.
Despite the power of forward search, partial-order planning
appears to offer a more flexible approach to temporal plan-
ning, where the precise embedding of actions in time can be
delayed until constraints emerge. Temporal planning has be-
come a far more central concern in the planning community
and this appears to offer an opportunity to exploit partial-
order planning benefits. However, planning with numbers,
which is also an important concern, appears to be made more
difficult in the partial-order framework, where the values of
metric variables can become difficult to reason with under
the effects of partially-ordered actions.

VHPOP (Younes and Simmons 2003) is the only recent
partial-order planner to exploit the approach for temporal



planning. Zeno (Penberthy and Weld 1994) was a more am-
bitious planner designed to solve problems involving con-
tinuous processes as well as time, built on a UCPOP foun-
dation (Penberthy and Weld 1992). The former used a
grounded representation and was unable to handle numbers,
but neither of the planners could be considered competitive
or scalable (VHPOP is the more competitive, but remains far
behind current leading technology).

In this work we use PDDL2.1 temporal models, in which
durative actions can be considered as instantaneous actions
linked by a duration and, possibly, invariant conditions. We
consider temporal–numeric planning within a forward state-
space search framework. In order to handle the combination
of temporal, numeric and continuous effects we build on the
COLIN (Coles et al. 2009a) planner, which is the only PDDL
planner generally available that can handle this combina-
tion. The remainder of this paper relies on some background
knowledge of the techniques employed in COLIN and its
purely temporal-planning predecessor, CRIKEY 3. The im-
portant elements of this are included, for convenience, be-
low. In the general case, states in a temporal-metric planning
problem can be characterised by a tuple 〈F, V,Q, P,C〉,
where:

• F is the set of atomic propositions that hold in the state.

• V is the vector of values of the task numeric variables. In
COLIN, where actions can have linear continuous numeric
effects, V is represented by V min and V max , the lower-
and upper-bounds on each V respectively, in the current
state (depending on how long the state persists).

• Q, the event queue, is a list of actions whose execution
has begun but not yet finished. For each (a, s) ∈ Q, a
identifies a ground action, and s the step at which it began.

• P is the plan to reach the current state.

• C is a list of temporal constraints over the steps in P , each
of the form lb ≤ (t(j) − t(i)) ≤ ub for a pair i, j of step
indices from the plan.

Adding actions to a plan involves appending the corre-
sponding start and end points of the action to the plan, not
necessarily in successive steps. When an action is added to
the plan, the state is updated. As in classical planning, ap-
plying an action (end point) a updates F and V according to
its effects, with the additional constraint that a can only be
applied if its effects do no conflict with the invariants of any
action in Q. To respect the temporal structure of the prob-
lem, C is updated as each step is added to the plan. There
are alternative approaches to this. For example, in Sapa (Do
and Kambhampati 2001), each new start action is added im-
mediately after the preceding action (allowing a separation
of ε to avoid interactions), while end actions can be added
by advancing time to the next event in Q and then enacting
that event. Although Sapa does not use an explicit repre-
sentation of C, this is equivalent to adding constraints to C:
t(i) − t(i − 1) = ε in the first case, where i is the index of
the newly added action and t(i) is its time of execution, and
t(i)−t(s) = dur(a) in the second case, where the ith action
is the end of durative action a that started with start action
s. CRIKEY 3 (Coles et al. 2008) uses a different approach,

representing the temporal constraints explicitly. Adding a to
the plan at index i changes C as follows:
• if step i is the start or end of an action, the sequence con-

straint ε ≤ t(i)− t(i− 1) is added to C.
• if step i ends the action (a, s) from Q, the constraint
mindur(a) ≤ t(i) − t(s) ≤ mindur(a) is added to C
(where mindur and maxdur are the bounds on the dura-
tion of a at step s.)
The more complex constraints used in CRIKEY 3 gener-

ate a Simple Temporal Problem (STP) (Dechter, Meiri, and
Pearl 1991) which can be used to check the temporal sound-
ness of decisions as they are made. This additional complex-
ity is necessary, however, in order to allow temporal planners
to reason with problems that exhibit required concurrency or
other more complex temporal constraints.

To perform forward search planning in domains with lin-
ear continuous numeric effects, COLIN uses an LP solver
to solve an augmented instance of the STP. First, additional
variables are added to record the values of the task numeric
variables along the trajectory of the plan. For each step i, the
variables vi ∈ V (i) record the values of each of V prior to i.
Likewise, v′i ∈ V ′(i) record those immediately following i.
Preconditions and effects of actions can then be represented
as constraints over these values:
• Numeric preconditions required at point i (the start or end

of an action) are added as constraints over V (i).
• Numeric invariants starting at step i and finishing at step j

are added as constraints over V ′i ..V
′
j−1 and Vi+1..V

′
j , i.e.

on points within the open interval between the start and
end of the action.

• Instantaneous numeric effects are added as a constraint
relating Vi to V ′i . For example, v′i = vi + wi records that
step i increases the value of v by the value of w.

• Continuous numeric effects are added as constraints over
both timestamps and state trajectory variables. For exam-
ple, vi+1 = vi+2(t(i+1)−t(i)) records that a continuous
effect is changing v at a rate of 2 between steps i and i+1.
By combining the STP with the metric constraints, the

LP can be used to check both the temporal consistency of
actions (as before), and also check that any interactions be-
tween time and numbers can be resolved (for instance, by
delaying the point at which a precondition is needed until
sufficient continuous change has occurred.)

3. Limitations of Forward State-Space
Search

Forward state-space search has proved to be an effective way
to find feasible plans. A key strength, when compared to
partial-order approaches, is that it avoids the need for ex-
plicit search to resolve threats by imposing a total-order on
actions: each new action added to the plan comes after all
those in the plan so far. The total ordering of actions ensures
that each new action cannot threaten earlier preconditions or
effects (it is automatically promoted), and no later action can
threaten its preconditions or effects (as that will, itself, be
promoted). Forward search planning, in the temporal case,



additionally requires that no action appended to the plan can
threaten the invariants of actions that have started but not
yet finished: threatening actions cannot be added until later,
and hence are necessarily ordered to occur after the actions
ending the invariants.

Whilst a total-order eliminates threats, it comes at the cost
of early commitment. Suppose one were to add a sequence
of non-durative actions [A,B,C] to a plan, where A and B
do not interfere with each other, and C depends only on B.
In a forward search planner, these actions would be given
sequential timestamps, say [0, 1, 2], even though A and B
could equally well go in the opposite order (i.e. [1, 0, 2]).
Furthermore, if we were to add another action to the plan
that must follow B but has no impact on A or C, the times-
tamp assigned to it would be 3, even though 1 would be ac-
ceptable. In other words, the price paid for threat-resolution
using a total-order is that actions never occur in parallel and
their ordering is determined early, in order to to avoid mu-
tual interference — even when there is none. Fortunately,
forward search is also able to support very rapid search tree
generation and backtracking, allowing it to recover from
poor choices of ordering.

In the temporal-case, where planning considers both the
starts and ends of actions, not only does a total-order lead
to poor-quality plans, it makes search far more difficult. To
see why this is, consider the example of two durative ac-
tions, A and B, with start points A` and B` and ends Aa
and Ba. Suppose that B is longer than A, and the actions
do not interfere with one another at the start, but due to their
end conditions and effects,Ba must precedeAa. If the plan-
ner chooses to construct the plan by adding the actions: A`,
..., B`, ..., Ba, in that order, (where the ellipses indicate
other actions in the plan, none of which affect A or B) then
the temporal constraints will turn out to be unsatisfiable and
require the planner to backtrack through all intermediate de-
cisions until it reorders B` before A` — even though the
ordering on the starts of the actions is logically uninterest-
ing, as the two do not interact.

Some of the problems that arise because of early com-
mitment in a temporal planning context can be preempted,
as discussed in (Coles et al. 2009b), but there remain oth-
ers that follow from the early commitment approach. One
of the most serious problems for forward search temporal
planning is in solving problems with deadlines, where dead-
lines can arise as the consequence of timed initial literals
(creating absolute deadlines) or within the interval of one or
more durative actions that provide some resource through-
out their execution (creating deadlines relative to their start-
ing points). Deadlines cause problems for forward search
because the point of failure in constructing a plan against a
deadline is at the deadline itself. However, the reason for
the failure can often be a poor choice of action ordering far
earlier in the plan, where the choice was made arbitrarily as
an early and unnecessary commitment. In these cases, for-
ward search is typically faced with significant backtracking
as the planner attempts to explore plan permutations without
effective guidance. As we will go on to demonstrate, reason-
ing directly with partial-orders makes our planner far more
effective when planning against deadlines.

These problems motivate the exploration of an approach
that exploits less commitment in the ordering of actions.

4. Modifying Forward Search to Reduce
Commitment

We propose to reduce the commitment to ordering choices
during forward search by adding constraints to the temporal
orderings of actions only as they are required to ensure pre-
conditions are met. The approach represents a compromise
between the total-ordering commitment of standard forward
search and the least commitment approach in partial-order
planning, since we commit to ordering choices that ensure
consistency of the plan, even though in some cases disjunc-
tions of constraints would be sufficient. Whilst our approach
is general and applicable to non-temporal and temporal plan-
ning, we restrict our attention to the temporal case, first con-
sidering a purely propositional representation, and then ex-
tending our approach to include both instantaneous and (lin-
ear) continuous numeric change.

4.1 Propositional Temporal Planning
In order to extend our forward search to support partial-order
planning we extend the representation of the state described
in Section 2.. We add further elements to the tuple as fol-
lows:
• F+ (F−), where F+(p) (F−(p)) gives the index of the

step a by which fact p was most recently added (deleted),
respectively.

• FP , where FP (p) is a set of pairs 〈i, d〉 ∈ (N0×{0, ε}):
– 〈i, 0〉 ∈ FP (p) records that step i is at the end of an

open interval during which p is required to hold. In
PDDL these arise due to invariants on actions, in which
case i is the end step of an action of which p is an over
all condition.

– 〈i, ε〉 ∈ FP (p) records that step i is the start of an inter-
val (half-closed on the left for consistency with PDDL
semantics) where p is required to hold. In PDDL these
correspond to at start or at end conditions rele-
vant to the step i.

The process of updating the state on application of start
or end actions is shown in Algorithms 1 and 2. On apply-
ing a start action, A`, at step i in the plan, the following
constraints are added to the partial-oder:
• for each p ∈ pre(A`), the recorded achiever of p is de-

moted to come before step i (line 6). Note that this implies
commitment to an achiever and ignores the possibility of
exploiting white knights (Chapman 1987).

• for each negative effect p of A`, p is removed from the
state, and step i is promoted to occur after any action that
requires p (line 10). This is a standard promotion declob-
bering strategy. The alternative demotion choice (placing
step i before the achiever for p) is not considered, though
this does not sacrifice completeness, as search could back-
track and find a plan in which A` comes earlier.

• for each positive effect p ofA`, p is added to the state, and
step i is recorded as the achiever of p (line 10). Here the



Algorithm 1: Starting Actions
Data: S, a state; A, an action to start
Result: S′
S′ ← S;1
sstep← next index in P ;2
estep← next index in P ;3
C ′ ← C+ the duration constraint of A between sstep4
and estep;
for p ∈ pre(A`) do5

if defined S′.F+(p) then add6

t(sstep) ≥ t(S′.F+(p)) + ε to S′.C;
add 〈sstep, ε〉 to S′.FP (p);7

for p ∈ eff−(A`) do8
if defined S′.F+(p) then add9

t(sstep) ≥ t(S′.F+(p)) + ε to S′.C;
for 〈i, d〉 ∈ S′.FP (p) do add t(sstep) ≥ t(i) + d10
to S′.C;
remove p from S′.F ;11

add t(sstep) ≥ S′.F−[p] + ε to S′.C;12

S′.F−(p)← sstep;
for p ∈ eff+(A`) do13

d← S′.F−(p);14
if d is defined ∧ d 6= sstep then add15
t(sstep) ≥ t(d) + ε to S′.C;
add p to S′.F ;16

add t(sstep) ≥ S′.F+[p] + ε to S′.C;17

S′.F+[p]← sstep;
for I ∈ pre(A↔) do18

a← S′.F+(p);19
if a > 0 ∧ a 6= sstep then add t(sstep) ≥ t(a) to20
S′.C;
add 〈estep, 0〉 to S′.FP (p);21

add (A, sstep, estep) to S′.Q;22
return S’23

order of selection of actions leads to early commitment to
possible orderings: alternative achievers are displaced by
the addition of A`.

• for each invariant p ∈ pre(A↔), if A` did not achieve p,
the recorded achiever is demoted to come before step i.

Applying an end action is similar, although without the
need to consider any over all conditions.

Figure 1 shows an example in which the current state, S,
has evolved from the application of a series of actions, rep-
resented by the numbered nodes — the numbers indicate the
order in which the actions were added. The dotted boxes
holding the ends of actions A and B indicate that the state
records actions that remain in progress. The dotted ellipses
show the points at which states are created during the for-
ward search, each following the addition of one of the ac-
tions. Action 1 is recorded as the most recent achiever for
F , while action 2 is the most recent deleter for G. When
step 4 is applied, the only necessary constraint is that step 1
should precede it, indicated by the connecting arrow.

Algorithm 2: Ending Actions
Data: S, a state; A, sstep, estep, an entry from Q
Result: S′
S′ ← S;1
for p ∈ pre(A a) do2

if defined S′.F+(p) then add3

t(estep) ≥ t(S′.F+(p)) + ε to S′.C;
add 〈estep, ε〉 to S′.FP (p);4

for p ∈ eff−(Aa) do5
if defined S′.F+(p) then add6

t(estep) ≥ t(S′.F+(p)) + ε to S′.C;
for 〈i, d〉 ∈ S′.FP (p) do add t(estep) ≥ t(i) + d7
to S′.C;
remove p from S′.F ;8

add t(estep) ≥ S′.F−[p] + ε to S′.C;9

S′.F−(p)← estep;
for p ∈ eff+(Aa) do10

d← S′.F−(p);11
if d is defined ∧ d 6= estep then add12
t(estep) ≥ t(d) + ε to S′.C;
add p to S′.F ;13

add t(estep) ≥ S′.F+[p] + ε to S′.C;14

S′.F+[p]← sstep;
remove (A, sstep, estep) from S′.Q;15
return S’16

4.2 Numeric Temporal Planning
Planning systems have become increasingly capable over the
past decade and the extension to handle explicit time and
numbers are important developments that extend the appli-
cability of the technology. For this reason, it is essential to
consider the impact of modifications to planning algorithms
on their ability to continue to handle these extensions. In
the propositional case, the state tuple is extended to record
achievers and deleters for propositions. To extend this idea
to numbers, similar annotations are recorded for numeric
state variables. For each v ∈ V :

• V eff (v) records the index of the most recent step having
an instantaneous effect on v.

• V cts(v) records a set of pairs of start and end step indices,
where (i, j) ∈ V cts(v) indicates that the action that began
at i and will finish at j (where step j is still in the event
queue) has a continuous numeric effect upon v.

• VP(v) records a set of step indices, where i ∈ VP(v)
when step i depends on the value of v. This arises in three
cases:

– step i has a precondition involving v;
– step i has an effect whose outcome depends on the prior

value of v (e.g. it increases v by some amount, or
changes another variable according to some function
involving v);

– step i is the start of an action whose duration depends
on v.



2

3

4
F

End
A

B
End

S

I

F,G

1

P<−>

¬G

0

Figure 1: Determination of which facts are true in a state.

• VI (v) records pairs of indices so that (i, j) ∈ VI (v)
when the action that begins at step i and will end at step j,
where j is currently in the event queue, has an over all
condition dependent on v.

Algorithms 1 and 2 can then be extended to handle the
constraints implied by the management of numeric effects
and preconditions. When adding a step A at index i:

1. If the effect of A depends on the value of v:
• add t(i) ≥ t(V eff (v)) + ε to S′.C to promote A after

the most recent action to affect v;
• ∀(s, e) ∈ S.V cts(v), add t(s) + ε ≤ t(i) and t(i) +
ε ≤ t(e) to S′.C, to place the dependent effect inside
currently active process effects (see further comment
below).
• add i to S′.VP(v).

2. If A has an instantaneous numeric effect on v:
• add t(i) ≥ t(V eff (v)) + ε to S′.C to order updates on
v;
• ∀j ∈ S.VP(v), add t(j) + ε ≤ t(i) to S′.C to avoid

harmful interactions between the effect of A and ac-
tions that depend on it;
• ∀(s, e) ∈ (S.V cts(v) ∪ S.VI (v)), add t(s) + ε ≤ t(i)

and t(i) + ε ≤ t(e) to S′.C, placing the step inside the
range of active continuous effects;
• S′.V eff (v)← i.
• update S′.V min(v), S′.V max (v) according to the ef-

fect.
3. If A starts an action (finishing at j) with an over all

condition on v:
• ∀(s, e) ∈ S.V cts(v), add t(s)+ ε ≤ t(i) and t(i)+ ε ≤
t(e) to S′.C, placing the step inside the range of active
continuous effects;
• if A does not have an update effect on v, add t(i) ≥
t(S.V eff (v)) + ε to S′.C to promote the invariant past
the most recent effect on v;
• add (i, j) to S′.VI (v).

4. If A starts an action (finishing at j) with a continuous ef-
fect on v:

• if A does not also have an instantaneous update effect
on v, add t(i) ≥ t(V eff (v)) + ε to S′.C to sequence
updates on v;
• ∀j ∈ S.VP(v), add t(j) + ε ≤ t(i) to S′.C;
• ∀(s, e) ∈ VI (v), add t(s) + ε ≤ t(i) and t(i) + ε ≤
t(e) to S′.C, placing the step inside the range of active
invariant conditions;
• add (i, j) to S′.V cts .
• S′.V eff (v)← i.

5. If A ends an action that began at k, with a continuous
effect on v:
• ∀(s, e) ∈ VI (v), add t(s)+ε ≤ t(i) and t(i)+ε ≤ t(e)

to S′.C;
• remove (k, i) from S′.V cts(v);
• ∀(s, e) ∈ S′.V cts(v)), add t(s) + ε ≤ t(i) and t(i) +
ε ≤ t(e) to S′.C, placing the action inside the range of
active continuous effects;
• S′.V eff (v)← k.

6. If A ends an action that had an over all condition on v:
• add i to S′.VP(v);
• remove (k, i) from S′.VI (v).
The key outcome of these ordering constraints is that we

impose a total ordering on steps changing the value of a vari-
able v, corresponding to the order in which the steps are
added to the plan. In doing so, at any point we can de-
termine the value of v by ordering steps predicated on v
but not changing it to occur after the last step changing v
and before the next. A further point to observe is that we
force conditions that depend on active process effects to lie
within those processes (and, similarly, within the range of
active invariants). This is a further commitment, since the
step might turn out to be better ordered after one or more
of the end points of active processes or invariants. The or-
dering choices in this case are left to backtracking search
to identify. The consequence of all these constraint addi-
tions, including those placing steps within the durations of
relevant active processes or invariants, is that our implemen-
tation commits to choices that allow us to maintain an unam-
biguous value for each of the metric fluents while avoiding
commitments about orderings relative to actions that have
no relevant interaction with the inserted step. This is a com-
promise between least commitment and total commitment.

4.3 Checking Action Choice Consistency
Having constructed the ordering constraints, S′.C, it is nec-
essary to check that they are consistent. In the absence
of continuous numeric effects, S′.C can be represented as
a Simple Temporal Network. It is straightforward to then
check the consistency of S′.C and, if valid, obtain a times-
tamp for each step in the plan. In the presence of linear
continuous numeric effects, we use an adaptation of the
temporal–numeric consistency approach of COLIN. As dis-
cussed in Section 4.2, the constraints required to manage
numeric effects ensure that we still have a total ordering on
the numeric effects interacting with a given v ∈ V . Simi-
larly, the constraints on actions with preconditions on v fix



their location in the plan to occur after the effect prior to
their addition, and before the next.

The construction of the LP in COLIN relies on three con-
sequences of the total ordering of steps:

1. It can be assumed that the order of steps in the plan is the
same as the order that they were added to it.

2. The values of the state variables at the start of each step
can be defined in terms of the values after the previous
step, according to the impact of any active continuous ef-
fects: the gradient on each v, δv is known (the combined
process effects of all active continuous effects on the vari-
able), and hence vi = v′i + δv(t(i+ 1)− t(i)).

3. By adding a dummy step now to the end of the plan, and
maximizing and minimizing the values of each vnow ∈
Vnow , one can obtain upper- and lower-bounds on each
v ∈ V after the steps added to the plan so far.

Having abandoned the total ordering on the steps in the plan,
we must consider the consequences of losing these three
properties.
1) Determining Step Order. The constraints we add to the
plan ensure that any ordering of the actions that is consistent
with the partial-order is a valid total-order. Therefore, we
can select an arbitrary topological sort of the partial-order as
a step order in which to process the plan.
2) Determining the Values of the Fluent at Each Step.
Whilst building the LP, we record three values for each v ∈
V :
• vval : the LP variable containing the value v′i after the last

step m to have an effect upon v;
• vt : the timestamp variable of the last step m to have an

effect upon v;
• δv: the current total gradient of the active linear continu-

ous change upon v (as in COLIN).
When visiting step i, for each variable v ∈ V we can deter-
mine vi before i as:

vi = vval + δv(t(i)− vt)

That is, rather than calculating the value of v based on the
value after the previous step in the plan, it is calculated using
the value after the last step to modify v, and the time since
that step.

On execution of each step i, the values associated with
each metric fluent v ∈ V are updated as follows:
• If step i has an instantaneous effect on v, its effect is han-

dled as in COLIN, by creating a constraint relating v′(i)
to v(i)) and by setting vval to v′(i), and vt to t(i).

• If step i is the start of an action with a continuous effect
changing v at the rate of c per time unit, c is added to δv
and vval ← v′(i), vt ← t(i).

• If step i is the end of an action with a continuous effect on
v with rate c, c is subtracted from δv and vval ← v′(i),
vt ← t(i).

3) Determining the Minimum and Maximum Values of
v ∈ V . In COLIN, before each iteration of the action se-
lection process, a single dummy timestamp variable tnow is

added to the LP, along with a vector of values representing
the metric fluents, Vnow . These values are used to represent
the timestamp and metric fluent values in the current state
and bounds on them are determined using the LP according
to constraints of the form:

vnow = v′n + δv(tnow − t(n))

In the partial-order version of our planner, the value of a
variable v is no longer necessarily linked to the last step of
the plan, so instead we create one dummy timestamp vari-
able tnow ,v for each v ∈ V . We then constrain each vnow as
follows:

vnow = vval + δv(tnow ,v − vt)

5. Modifying the Heuristic
Section 4. describes the way in which the state representa-
tion can be extended and correctly maintained in order to
achieve a partial-order plan construction within a forward
planning framework, working with time, numbers and con-
tinuous effects. We now turn our attention to heuristic search
guidance in the search space of these states.

One alternative is straightforward: we can discard the ad-
ditional information recorded in the state, and evaluate states
using the existing temporal relaxed planning graph (TRPG)
heuristic in COLIN. Doing this discards important informa-
tion, however: all facts in the current state are added to fact
layer t = 0 of the relaxed planning graph, irrespective of
when they were achieved. There is therefore no pressure
to choose actions in the relaxed plan that could go earlier
rather than later in the partial-order. In the construction of
the states we accumulate information about the earliest times
at which each fact could be achieved and this can be used to
improve the heuristic estimates if we use the relaxed plans
to estimate makespan.

To begin with, when step i is added to the plan, we
use the LP to calculate the earliest timestamp at which it
could be executed, tmin(i). In the TRPG each layer is
associated with the earliest time it can represent. We ob-
serve that the earliest time a fact p is available will be
ft(p) = max{tmin(F+(p)), tmin(F−(p)) + ε}, because
either it will be achieved by its last achiever as early as that
action could be applied, or else it must be reachieved after
its last deleter, again at its earliest application. Thus p is not
added to the TRPG until a fact layer occurring at ft(p). Sim-
ilarly, for each numeric precondition specified over variables
vars , we delay the layer at which it is considered satisfied
to:

ft(vars) = max
v∈vars

(tmin(V eff (v)) + ε)

These modifications prevent actions from being selected ear-
lier that their preconditions can be achieved. Furthermore,
the constraints that affect the scheduling of actions also im-
ply that any action that adds p will be scheduled after exist-
ing actions affecting p, so after ft(p), and any action that
deletes p must also come after actions requiring p. Thus,
actions that delete p will necessarily be delayed until:

fd(p) = max[ft(p), max
(i,d)∈FP(p)

(tmin(i) + d)]



0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

P
a
rt

ia
l-
O

rd
e
r 

L
if
ti
n
g

POPF

Driverlog
Depots
Satellite
Zeno Travel
Trucks
TPP
Openstacks

(a) Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
a
rt

ia
l-
O

rd
e
r 

L
if
ti
n
g

POPF

Driverlog
Depots
Satellite
Zeno Travel
Trucks (*0.05)
TPP (*0.05)
Openstacks (*0.5)

(b) Makespan

Figure 2: Comparing POPF to Standard Total-Order Search followed by Partial-Order Lifting

By similar reasoning, a numeric effect, ne, updating vari-
able v, must be scheduled after the last actions affecting any
of the variables appearing in ne, vars, and also after the last
point at which v is required:

ft(ne) = max[ft(vars), max
i∈VP(v)

(tmin(i) + ε)]

In our evaluation we compare results using both the origi-
nal heuristic and the modified heuristic. A side-effect of the
use of a relaxed plan heuristic is the opportunity to extract
helpful actions (Hoffmann and Nebel 2001). When using
our partial-order plan structure we define helpful actions to
be all actions in the relaxed plan whose preconditions are
satisfied in the current state (rather than in the first layer
of the graph, since the TRPG is built outwards from time
t = 0).

6. Evaluation
We now present results comparing our partial-order forward
planner with the alternative approach of lifting a partial-
order from a totally ordered plan produced by COLIN. Lift-
ing an optimal partial-order is NP-hard, but finding a good
partial-order is inexpensive in general using a straightfor-
ward approach (Veloso, Pérez, and Carbonell 1990). All
tests used a 3.4GHz Pentium IV machine, limited to 30 min-
utes and 1.5GB of memory. We tested on a wide range of
temporal domains from recent planning competitions, but
space limitations prevent us from showing results for all do-
mains. We plot a representative sample of results and com-
ment on results from other domains in the text. In order to
maximize the amount of data we can plot, results for IPC 3
domains include both the simple time and time variants of
the respective domain (and for satellite, also complex time).
In all sets of results we plot the time taken for our approach
using partial orders (POPF), against the time taken using the
standard total-ordered search but then lifting a partial-order
(PO-LIFT). Points above the line y = x show better perfor-
mance (shorter time/shorter makespan) for POPF.

Figure 2a, shows the performance of our approach us-
ing the original heuristic. This directly compares the costs
of reasoning with partial-orders during search with and lift-
ing a partial-order from a totally ordered plan (including the

time to construct the plan). The results show that reason-
ing directly with partial-orders turns out to be consistently
marginally more efficient. This result surprised us and we
are still attempting to understand it better. Our current hy-
pothesis is that plan permutation symmetries might be re-
duced through the direct reasoning with partial-orders.

Figure 2b compares the makespans for plans produced by
each approach. The partial-order planner achieves essen-
tially identical performance to the lifting approach in most
cases. These results serve to emphasise the importance of
coupling the construction of a partial-order with a heuris-
tic tuned to exploit the power this offers. With the standard
heuristic the planner fails to perceive the opportunities to
construct plans with shorter makespan.

In contrast, Figure 3a shows the makespan of plans gen-
erated using the POPF approach combined with the heuris-
tic outlined in Section 5.. In this case it is clear that plans
of shorter makespan are produced, often by significant mar-
gins. The heuristic supports the planner in finding choices
of action that make plans shorter1.

There are some interesting anomalous points on the graph
where the POPF planner produces plans of longer makespan.
There are only two domains in which this occurs: Driver-
log and Zeno travel. In Driverlog this happens in problems
that have goals for both trucks and drivers. The shortest-
makespan way to achieve a driver goal, within the relaxed
planning graph, is to for a driver to drive a truck to the
driver’s destination, so the heuristic will prefer this decision.
However, if the truck also has a goal destination, some driver
must leave his goal to drive the truck to its goal location.
Then, to reach the goal state, the driver must returns again
on foot. This is an example in which the short-makespan
heuristic ends up producing poor decisions. A similar situa-
tion arises in Zeno Travel.

Figure 3b shows that the new heuristic is more expensive
to compute. The heuristic guides the search towards plans
with shorter makespan rather than towards plans that con-
tain fewer steps and this can lead to larger numbers of steps
and slower plan construction. This increased computation

1The Wilcoxon ranked sign test confirms that the POPF planner
produces shorter plans with P=95%.



0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
a

rt
ia

l-
O

rd
e

r 
L

if
ti
n

g
 M

a
k
e

s
p

a
n

POPF Makespan

Driverlog
Depots
Satellite
Zeno Travel
Trucks (*.1)
TPP (*.1)
Openstacks (*.5)

0

50

100

150

200

0 50 100 150 200

(a) Makespan (inset expands lower left)

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

P
a

rt
ia

l-
O

rd
e

r 
L

if
ti
n

g
 T

im
e

 (
s
)

POPF Time (s)

Driverlog
Depots
Satellite
Zeno Travel
Trucks
TPP
Openstacks

(b) Time

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

P
a

rt
ia

l-
O

rd
e

r 
L

if
ti
n

g
 T

im
e

 (
s
)

POPF Time (s)

Satellite Complex Time Windows
Satellite Time Windows
Pipes No-Tankage Deadlines
P2P

(c) Time with Deadlines

Figure 3: Results for the Planner making use of the new Heuristic

time also results in slightly poorer coverage. We demon-
strated earlier, however, that if a fast solution is desired,
POPF search with the original heuristic is the most efficient.
Planning with partial-orders therefore offers us a choice be-
tween heuristics that favour performance or plan quality.

Our final set of results (Figure 3c) considers using our
new heuristic on problems with deadlines2, and a P2P do-
main (Huang, Chen, and Zhang 2009), where good solu-
tions rely on downloading files within planned envelopes
of availability. In all these problems, reasoning about the
makespan of the plan head is critical in finding solutions to
the problems. These domains, containing either timed ini-
tial literals (TILs) or envelopes, POPF with the new heuris-
tic finds plans more quickly in general and provides much
better coverage (in the Satellite variants, for instance, cover-
age is increased five-fold). In reasoning with the makespan
of the plan head, POPF is able to ensure that the maximum
amount of activity can occur before the deadline, and im-
prove the opportunity to solve the problem. On the other
hand, standard search often commits early to sequential de-
cisions that mean the deadlines cannot be met, and spends
a great deal of time fruitlessly searching unforeseen dead-
ends. Here, reasoning about partial orders in the plan is crit-
ical to solving problems efficiently, encouraging parallel ac-
tivity rather than only progress to the goal. Makespan data
is not shown for this set of results, as the deadlines restrict
the makespans of valid plans, so if the problems are solved,
plans of similar makespan are produced (in the case of the
P2P domain, makespans equal those known to be optimal.)

7. Conclusion
Partial-order planning is an intuitively attractive strategy, but
has proved difficult to achieve efficiently. We have shown
that it is possible to achieve some of the advantages of
partial-order planning in a forward planning framework us-
ing an expressive planning language. The complexity of
partial-order reasoning can be managed by finding a com-
promise between least-commitment and total commitment.

2We use all IPC domains with deadlines but omit Airport, as
a bug in the ADL-to-STRIPS compilation means the TILs do not
actually interact with the problem.

Doing so can yield significant advantages in plan quality, us-
ing a more informed heuristic for guiding the search within
this partial-order structure.

There remain several opportunities to extend the ideas we
have described. We are interested in recognising automati-
cally the situations in which the extended heuristic will offer
benefit. The integration of linear program into the combi-
natorial decision-making in planning is a fruitful route to
extension of capabilities of planners and there remain many
further directions in which to exploit this line of research.

References
Chapman, D. 1987. Planning for conjunctive goals. Artificial
Intelligence 29:333–377.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008. Planning
with Problems Requiring Temporal Coordination. In Proc. AAAI.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009a. Temporal
Planning in Domains with Linear Processes. In Proc. IJCAI.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2009b. Ex-
tending the Use of Inference in Temporal Planning as Forwards
Search. In Proc. ICAPS.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence 49:61–95.
Do, M. B., and Kambhampati, S. 2001. Sapa: a Domain-
Independent Heuristic Metric Temporal Planner. In Proc. Euro-
pean Conference on Planning (ECP), 82–91.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Huang, R.; Chen, Y.; and Zhang, W. 2009. An Optimal Tempo-
rally Expressive Planner: Initial Results and Application to P2P
Network Optimization. In Proc. ICAPS.
Penberthy, J., and Weld, D. 1992. UCPOP: a sound, complete,
partial-order planner for ADL. In Proc. Int. Conf. On Principles
of Knowledge Representation and Reasoning, 103–114.
Penberthy, J., and Weld, D. 1994. Temporal planning with con-
tinuous change. In Proc. AAAI.
Veloso, M.; Pérez, M.; and Carbonell, J. 1990. Nonlinear plan-
ning with parallel resource allocation. In Proc. of the DARPA
Workshop on Innovative Approaches to Planning, Scheduling and
Control, 207–212.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Versatile
Heuristic Partial Order Planner. JAIR 20:405–430.


