Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

In vitro study of protein release from AFCo1 and implications in mucosal immunisation

Acevedo, R. and Romeu, Belkis and Zayas, C. and Gonzalez, E and Lastre, M and del Campo, J and Mullen, A and Ferro, Valerie and Perez, O (2012) In vitro study of protein release from AFCo1 and implications in mucosal immunisation. VacciMonitor, 21 (2). ISSN 1025-028X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Adjuvant Finlay Cochleate 1 (AFCo1) is a Proteoliposome-derived cochleate obtained from Neisseria meningitidis serogroup B. Transformation of proteoliposomes into AFCo1 potentiates the immune response on Neisseria antigens when it is administered by intranasal or intragastric (i.g) routes. However, the i.n route has been demonstrated to be more effective. The aim of this work is to evaluate in vitro the protein release from AFCo1, in simulated gastric fluid (SGF) or simulated nasal fluid (SNF) using a microdissolution test and to provide support for the results found when AFCo1 was administered by i.g or i.n routes in BALB/c mice. Results showed that dilution of AFCo1 in simulated gastric fluid affects the delivery of Neisseria protein antigens because they were released from cochleate structures faster than when simulated nasal fluid was used. In conclusion, conditions simulating gastric environment affect the delivery of protein antigens from AFCo1 and this result could partially explain why i.n administration is more effective in vivo than i.g immunisation.