Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Fast and accurate solutions of electromagnetics problems involving lossy dielectric objects with the multilevel fast multipole algorithm

Ergul, O. (2012) Fast and accurate solutions of electromagnetics problems involving lossy dielectric objects with the multilevel fast multipole algorithm. Engineering Analysis with Boundary Elements, 36 (3). pp. 423-432. ISSN 0955-7997

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Fast and accurate solutions of electromagnetic scattering problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Iterative solutions and accuracy of the results are investigated in detail for diverse geometries, frequencies, and conductivity values. It is demonstrated that CTF solutions are significantly accelerated as the conductivity increases to moderate values and CTF becomes comparable to JMCFIE in terms of efficiency. Considering also the superior accuracy of this formulation, CTF becomes suitable for fast and accurate analysis of scattering problems involving lossy dielectric objects.