Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers

Zuiani, Federico and Vasile, Massimiliano (2012) Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers. International Journal of Aerospace Engineering, 2012. p. 836250.

[img]
Preview
PDF
Deb_rem_r1_v2.pdf - Draft Version

Download (6MB) | Preview

Abstract

This paper presents a novel approach for the preliminary design of Low-Thrust (LT), many-revolution transfers. The main feature of the novel approach is a considerable reduction in the control parameters and a consequent gain in computational speed. Each spiral is built by using a predefined pattern for thrust direction and switching structure. The pattern is then optimised to minimise propellant consumption and transfer time. The variation of the orbital elements due to the propulsive thrust is computed analytically from a first-order solution of the perturbed Keplerian motion. The proposed approach allows for a realistic estimation of ΔV cost and time of flight required to transfer a spacecraft between two arbitrary orbits. Eccentricity and plane changes are both taken into account. The novel approach is applied here to the design of missions for the removal of space debris by means of an Ion Beam Shepherd (IBS) Spacecraft. In particular, two slightly different variants of the proposed low-thrust control model are used for the two main phases of the debris removal mission, i.e. the rendezvous with the target object and its removal. Thanks to their relatively low computational cost they can be included in a multiobjective optimisation problem in which the sequence and timing of the removal of five hypothetical pieces of debris are optimised in order to minimise both propellant consumption and mission duration.