Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

An improved lead-acid battery pack model for use in power simulations of electric vehicles

Carter, R. and Cruden, A. and Hall, P. J. and Zaher, A. S. (2012) An improved lead-acid battery pack model for use in power simulations of electric vehicles. IEEE Transactions on Energy Conversion, 27 (1). pp. 21-28. ISSN 0885-8969

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A new model for a lead-acid battery pack is proposed for use in power simulations of electric vehicles. A linear approximation using a constant voltage drop has been used to model the charge-transfer resistance of the battery pack, and an exponential voltage-recovery equation has been used to model the transient capacitance effects following a period of discharge. The new model is easy to implement with simple calculations and easily acquired parameters, combining speed of implementation with accuracy. The new model was found to have a peak error of 3.1% in drive cycle tests, thus comparing favorably to existing models of similar complexity. An initial assessment of the model's suitability for use with a lithium-ion battery pack was also performed, finding a peak error of 5%.