Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A comparison of methods for forensic DNA extraction : Chelex-100 (R) and the QIAGEN DNA Investigator Kit (manual and automated)

Phillips, K. and McCallum, N. and Welch, L. (2012) A comparison of methods for forensic DNA extraction : Chelex-100 (R) and the QIAGEN DNA Investigator Kit (manual and automated). Forensic Science International: Genetics, 6 (2). pp. 282-285. ISSN 1872-4973

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Efficient isolation of DNA from a sample is the basis for successful forensic DNA profiling. There are many DNA extraction methods available and they vary in their ability to efficiently extract the DNA; as well as in processing time, operator intervention, contamination risk and ease of use. In recent years, automated robots have been made available which speed up processing time and decrease the amount of operator input. This project was set up to investigate the efficiency of three DNA extraction methods, two manual (Chelex®-100 and the QIAGEN DNA Investigator Kit) and one automated (QIAcube), using both buccal cells and blood stains as the DNA source. Extracted DNA was quantified using real-time PCR in order to assess the amount of DNA present in each sample. Selected samples were then amplified using AmpFlSTR SGM Plus amplification kit. The results suggested that there was no statistical difference between results gained for the different methods investigated, but the automated QIAcube robot made sample processing much simpler and quicker without introducing DNA contamination.