Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A promising new wavelength region for three-photon fluorescence microscopy of live cells

Norris, Greg and Amor, Rumelo and Dempster, John and Amos, William B and McConnell, Gail (2012) A promising new wavelength region for three-photon fluorescence microscopy of live cells. Journal of Microscopy, 246 (3). pp. 266-273.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report three-photon laser scanning microscopy (3PLSM) using a bi-directional pumped optical parametric oscillator (OPO) with signal wavelength output at λ= 1500 nm. This novel laser was used to overcome the high optical loss in the infrared spectral region observed in laser scanning microscopes and objective lenses that renders them otherwise difficult to use for imaging. To test our system, we performed 3PLSM auto-fluorescence imaging of live plant cells at λ= 1500 nm, specifically Spirogyra, and compared performance with two-photon excitation (2PLSM) imaging using a femtosecond pulsed Ti:Sapphire laser at λ= 780 nm. Analysis of cell viability based on cytoplasmic organelle streaming and structural changes of cells revealed that at similar peak powers, 2PLSM caused gross cell damage after 5 min but 3PLSM showed little or no interference with cell function after 15 min. The λ= 1500 nm OPO is thus shown to be a practical laser source for live cell imaging.