Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Artificial neural network prediction of weld distortion rectification using a travelling induction coil

Barclay, Colin and Campbell, Stuart and Galloway, Alexander and McPherson, Norman (2013) Artificial neural network prediction of weld distortion rectification using a travelling induction coil. International Journal of Advanced Manufacturing Technology, 68 (1-4). pp. 127-140. ISSN 0268-3768

[img] PDF
Galloway_AM_Pure_Artificial_Neural_Network_Prediction_of_Weld_Distortion_Rectification_using_a_Travelling_Induction_Coil_May_2012.pdf - Preprint

Download (1MB)

Abstract

An experimental investigation has been carried out to determine the applicability of an induction heating process with a travelling induction coil for the rectification of angular welding distortion. The results obtained from experimentation have been used to create artificial neural network models with the ability to predict the welding induced distortion and the distortion rectification achieved using a travelling induction coil. The experimental results have shown the ability to reduce the angular distortion for 8 mm and 10 mm thick DH36 steel plate and effectively eliminate the distortion on 6 mm thick plate. Results for 6 mm plate also show the existence of a critical induction coil travel speed at which maximum corrective bending occurs. Artificial neural networks have demonstrated the ability to predict the final distortion of the plate after both welding and induction heating. The models have also been used as a tool to determine the optimum speed to minimise the resulting distortion of steel plate after being subjected to both welding and induction heating processes.