Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Artificial neural network prediction of weld distortion rectification using a travelling induction coil

Barclay, Colin and Campbell, Stuart and Galloway, Alexander and McPherson, Norman (2013) Artificial neural network prediction of weld distortion rectification using a travelling induction coil. International Journal of Advanced Manufacturing Technology, 68 (1-4). pp. 127-140. ISSN 0268-3768

[img] PDF
Galloway_AM_Pure_Artificial_Neural_Network_Prediction_of_Weld_Distortion_Rectification_using_a_Travelling_Induction_Coil_May_2012.pdf - Preprint

Download (1MB)

Abstract

An experimental investigation has been carried out to determine the applicability of an induction heating process with a travelling induction coil for the rectification of angular welding distortion. The results obtained from experimentation have been used to create artificial neural network models with the ability to predict the welding induced distortion and the distortion rectification achieved using a travelling induction coil. The experimental results have shown the ability to reduce the angular distortion for 8 mm and 10 mm thick DH36 steel plate and effectively eliminate the distortion on 6 mm thick plate. Results for 6 mm plate also show the existence of a critical induction coil travel speed at which maximum corrective bending occurs. Artificial neural networks have demonstrated the ability to predict the final distortion of the plate after both welding and induction heating. The models have also been used as a tool to determine the optimum speed to minimise the resulting distortion of steel plate after being subjected to both welding and induction heating processes.