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Abstract

In a series of papers, Bedford and Cooke used vine (or pair-copulae) as a graphical
tool for representing complex high dimensional distributions in terms of bivariate and
conditional bivariate distributions or copulae. In this paper, we show that how vines
can be used to approximate any given multivariate distribution to any required degree
of approximation. This paper is more about the approximation rather than optimal
estimation methods. To maintain uniform approximation in the class of copulae used to
build the corresponding vine we use minimum information approaches. We generalised
the results found by Bedford and Cooke that if a minimal information copula satisfies
each of the (local) constraints (on moments, rank correlation, etc.), then the resulting
joint distribution will be also minimally informative given those constraints, to all regular
vines. We then apply our results to modelling a dataset of Norwegian financial data
that was previously analysed in Aas et al. (2009).
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Figure 1: A regular vine with 4 elements

copula and copula density be Cjppe and cjype respectively. Let the marginal distributions
F; with densities f;,i = 1,...,n be given. Then the vine-dependent distribution is uniquely
determined and has a density given by

fr,.mn) =[] () 1:[ II ¢wp.Fip.. Fyp.) (2)

i=1 7=1 e(j.k)EE;

The existence of regular vine distributions is discussed in detail by Bedford and Cooke
(2002).

The density decomposition associated with 4 random variables X = (X3,...,X4) with
a joint density function f(x1,...,24) satisfying a copula-vine structure (this structure is
called D-vine, see Kurowicka and Cooke, 2006, pp. 93) shown in Figure 1 with the marginal
densities f1,..., f4 is

4
fioza(z1, ... w4) = Hf(xi)><Clz{F(ﬂfl)vF($2)}C23{F(5E2),F(Is)}c34{F(x3),F($4)}3)

xepgp{F (21 | 22), F(xs | x2) beoas{F (22 | 3), F(24 | 23)}

Xciape3{ F (w1 | w2, 23), F (24 | 22,73)}
This formula can be derived for this case using the general expression
f(z,y) = fx(@) fy (y)e(Fx (2), Fy (y)),

or equivalently

f(xly) = Fx (@)e(Fx (z), Fy (y)),
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Figure 6: The presentation of F(X?Y) as a function of A\; and \y
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Figure 8: Selected vine structure for the Norwegian stock data set with 4 variables: Norwegian
stock index (T), MSCI world stock index (M), Norwegian bond index (B) and SSBWG hedged
bond index (S).

We illustrate the procedure by applying it to a financial data set.

Example 2 In this example, we use the same data set studied in Aas et al (2009). These
are four time series of daily data: the Norwegian stock index (TOTX), the MSCI world
stock index, the Norwegian bond index (BRIX) and the SSBWG hedged bond index, for the
period from 0.4.01.1999 to 0.8.07.2003. We denote these four variables by T, M, B and S,
respectively.

We want to generate vine approximation fitted to this data set to any given multivariate
density using minimum information distribution. We select a similar vine structure with 4
elements shown in Figure 1 for this data presented in Figure 8. It should be noticed that,
we can find the corresponding functions of the copula variables X, Y, Z and W associated
with T, M, B, S, respectively, defined by h;(X,Y) = h;(Ffl(X)7F{1(Y)), etc., and clearly
these should also have the same specified expectation, that is, E(hi(T,M)) = E(h;(X,Y)),
etc. The minimum information copulae calculated in this example are derived based on the
copula variables, X, Y, Z, W.

We first can construct a minimally informative copula between any two variables joining
together in the first tree, 77. As an example, we show the construction of a minimally
informative copula between two variables M and T denoted by Cpjs under the following
constraints: k) (M,T) = MT, hy(M,T) = TM?, hy(M,T) = T*M and hly(M,T) = MT?3.
In other words, we use the Fourier copula of order 4 or a base with 4 elements to approximate
this copula. We fix the values of the expectations of these functions as follows

1 1094 1094
=—— Y TiM; =02314,00 = —— Y T;M?=0.14
“ 1094; 0-2314, 02 1094; i = 01497

17



CopXY)

Minimally informative copula given the experts’ assessments







CulY: 2)

sl 2)

Minimally informative copula given the experts’ assessments

(XXX
)
lf"?“:“::‘::“\
l",::;:::‘::““

!
SR,
S

Minimally informative copula given the experts’ assessments




Bin The constraints Lagrange multipliers
[hy | M}, By | M], Elhy | M]) (A1s A2, A3)

0.7< M <08
0.8< M <09
09<M<1

0.2595,0.1736,0.1618
0.3156,0.2386,0.1945
0.2626,0.2087,0.1618

7.3803,-15.482,8.9438)
9.2597,-9.2321,-0.4385)
0.7429,-1.1895,0.6117)

(B
0<M<0.1 (0.1594, 0.0678, 0.1224) (10.9383, -8.4123, -6.9916)
0.1 <M <0.2 || (0.1785, 0.0857, 0.1252) (-4.2491, 8.1402, -5.2132)
0.2 < M < 0.3 || (0.207, 0.1181, 0.1357) (2.1269,-1.7432,-1.4931)
0.3< M < 0.4 || (0.1891,0.1032,0.1171 (-7.2137,2.0704,1.9255)
0.4 < M <0.5 || (0.2587,0.1748,0.1653 (-8.7337,5.2627,3.8922)
0.5 <M <0.6 || (0.2377,0.1538,0.1526 (-12.5348,-1.6083,14.9014)
0.6 <M <0.7 | ( (3.9591,-7.3273,3.5925)

( (

( (

( (-

)
)
)
0.2712,0.1802,0.1673)
)
)
)

Table 2: The constraints and corresponding Lagrange multipliers associated with the con-
ditional minimal informative copula between T' | M € (0,1) and B | M € (0,1) for each
bin

Minimally informative copula given the experts’ assessments

0.6

0.4

0
Z+ v+ (00.1) 0 X ye (0,0.1)

Figure 12: The minimally informative copula between T' | M € (0,0.1) and B | M € (0,0.1)
variables of Norwegian Stock data given E[h)(T,B) | 0 < M < 0.1], E[R4(T,B) | 0 < M <
0.1], E[R4(T,B) | 0 < M < 0.1] constraints .
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Figure 13: The changes of E[h}(T,B) | 0 < M < 1] over the bins.
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Figure 14: Box-plot demonstration of the E[h)(T,B) |0 < M < 1].

Table 2 shows the constraints and the corresponding Lagrange multipliers required to
build conditional minimum information copula between 7' | M € (0,1) and B | M € (0,1)
for 10 bins.

It is important to study the changes of the conditional expectation, E[h|(T,B) | M]
(E[XZ | y)) for different values of M or over the bins. Figure 13 shows this conditional
expectation, E[h} (T, B) | M], calculated from the minimum information copula C'(T | M, B |
M) where M varies on (0,1) along with the 95% confidence interval around the mean. As
we can observe form this figure the changes of this measure is not...

The Box-plot demonstration of this conditional expectation, E[h}(T,B) | 0 < M < 1] is
illustrated in Figure 14. Similarly, we construct the conditional minimum information copula
between M | B and S | B given the following constraints represented as the conditional
expectations of some objective functions:

Ry (M,S) = MS, h4(M,S) = MS? hi(M,S)=M?S

Table 3 shows the constraints and the corresponding Lagrange multipliers required to build
conditional minimum information copula between M | B € (0,1) and S | B € (0,1) for 10
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Figure 15: The conditional expectation E[h] (M, S) | 0 < B < 1] derived from the minimally
informative copula between M | B € (0,1) and S | B € (0, 1) obtained above.
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Figure 16: Box-plot demonstration of E[hi(M,S) |0 < B < 1].
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Figure 17: The minimally informative copula between T' | {M € (0.33), B € (0,0.33)} and
S| {M € (0.33), B € (0,0.33)} variables of Norwegian Stock data given e; = E[h}(T,S5) |
(M € (0.33),B € (0,0.33)}] = 0.394,¢2 = E[RY(T,S) | {M € (0.33),B € (0,0.33)}] =
0.295,e5 = E[h5(T,S) | {M € (0.33), B € (0,0.33)}] = 0.3115 constraints .

(B[R (T, S) | M, B] Lagrange multipliers
Bins E[Ry(T,S) | M, B], (A1, A2, A3)
E[R(T,S) | M, B)
0.394,0.295,0.3115)
0.2995,0.1975,0.2192

0< M <0.33,0<B<0.33
0< M <0.33,0.33 < B <0.66 )
0<M<0.33,066<B<1 0.2089,0.1346,0.1381)
0.33 < M <0.66,0 < B <0.33 0.2548,0.1731,0.1541)
)
)

( 5.0563,0.0806,-1.1935)
(
(
(
0.33 < M < 0.66,0.33 < B < 0.66 || (0.2459,0.1661,0.1623
(
(
(
(

(

(5.8976,2.1862,-3.8)
(-0.5927,5.6017,0.1003)
(6.8429,2.8645,-6.5986
(10.2143,-3.9284,-1.6448)
(

(

(

(

0.33 < M < 0.66,0.66 < B <1 0.2414,0.1643,0.1657
0.66 <M <1,0< B <0.33 0.2992,0.222,0.1976)

0.66 < M <1,0.33 < B <0.66 0.2766,0.1942,0.1895)
0.66 < M <1,0.66 < B<1 0.2163,0.1473,0.1334)

-5.0439,5.6452,3.3403)
0.3324,2.6365,1.6332)
-0.0135,3.8203 -1.2379)
16.729,-0.3679,-12.5079)

Table 4: The constraints and corresponding Lagrange multipliers associated with the condi-
tional minimally informative copula between T' | (M, B) and S | (M, B) for each bin.
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Figure 18: The conditional expectation E[hi(T,S) |0 < M < 1,0 < B < 1] derived from the
minimally informative copula between T' | {M € (0,1),B € (0,1)} and S | {M € (0,1),B €
(0,1)} obtained above.

1,0 < B < 1] (the middle plane and recognised by “O” in the figure) and 95% confidence
bound (we use “4” to display the upperbound, and “{” denotes the lowerbound) over the
bins specified in Table 4.

6 Conclusion

In this paper, we present a novel method to approximate a multivariate distribution by any
vine structure to any degree of approximation. Our approach uses the minimum informa-
tion copulas that can be specified to any required degree of precision based on the data
available. We prove rigourously that good approximation ‘locally’ guarantees good approx-
imation globally. This approximation allows the use of a fixed finite dimensional family of
copulas to be used in a vine construction, with the promise of a uniform level of approxima-
tion.In other words, we can use the same bases to approximate each copula in each tree of
the corresponding vine.

However, a vine structure imposes no restrictions on the underlying joint probability
distribution it represents, but this is crucial to investigate which vine structure is most
appropriate. The choice of vine structure becomes more significant when we truncate class
of copulae to make search strategy simpler. Therefore, the approximation of a multivariate
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