Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Approximating multivariate distributions with vines

Bedford, T.J. and Daneshkhah, A. (2010) Approximating multivariate distributions with vines. In: Royal Statistical Society - 2010 International Conference, 2010-09-14 - 2010-10-17.

[img] PDF
strathprints028364.pdf

Download (1MB)

Abstract

In a series of papers, Bedford and Cooke used vine (or pair-copulae) as a graphical tool for representing complex high dimensional distributions in terms of bivariate and conditional bivariate distributions or copulae. In this paper, we show that how vines can be used to approximate any given multivariate distribution to any required degree of approximation. This paper is more about the approximation rather than optimal estimation methods. To maintain uniform approximation in the class of copulae used to build the corresponding vine we use minimum information approaches. We generalised the results found by Bedford and Cooke that if a minimal information copula satis¯es each of the (local) constraints (on moments, rank correlation, etc.), then the resulting joint distribution will be also minimally informative given those constraints, to all regular vines. We then apply our results to modelling a dataset of Norwegian financial data that was previously analysed in Aas et al. (2009).