Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Non-uniform order mixed FEM approximation : implementation, post-processing, computable error bound and adaptivity

Ainsworth, Mark and Ma, Xinhui (2012) Non-uniform order mixed FEM approximation : implementation, post-processing, computable error bound and adaptivity. Journal of Computational Physics, 231 (2). pp. 436-453. ISSN 0021-9991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The present work provides a straightforward and focused set of tools and corresponding theoretical support for the implementation of an adaptive high order finite element code with guaranteed error control for the approximation of elliptic problems in mixed form. The work contains: details of the discretisation using non-uniform order mixed finite elements of arbitrarily high order; a new local post-processing scheme for the primary variable; the use of the post-processing scheme in the derivation of new, fully computable bounds for the error in the flux variable; and, an hp-adaptive refinement strategy based on the a posteriori error estimator. Numerical examples are presented illustrating the results obtained when the procedure is applied to a challenging problem involving a ten-pole electric motor with singularities arising from both geometric features and discontinuities in material properties. The procedure is shown to be capable of producing high accuracy numerical approximations with relatively modest numbers of unknowns.