Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Non-uniform order mixed FEM approximation : implementation, post-processing, computable error bound and adaptivity

Ainsworth, Mark and Ma, Xinhui (2012) Non-uniform order mixed FEM approximation : implementation, post-processing, computable error bound and adaptivity. Journal of Computational Physics, 231 (2). pp. 436-453. ISSN 0021-9991

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The present work provides a straightforward and focused set of tools and corresponding theoretical support for the implementation of an adaptive high order finite element code with guaranteed error control for the approximation of elliptic problems in mixed form. The work contains: details of the discretisation using non-uniform order mixed finite elements of arbitrarily high order; a new local post-processing scheme for the primary variable; the use of the post-processing scheme in the derivation of new, fully computable bounds for the error in the flux variable; and, an hp-adaptive refinement strategy based on the a posteriori error estimator. Numerical examples are presented illustrating the results obtained when the procedure is applied to a challenging problem involving a ten-pole electric motor with singularities arising from both geometric features and discontinuities in material properties. The procedure is shown to be capable of producing high accuracy numerical approximations with relatively modest numbers of unknowns.