Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Redox initiated free radical polymerization of 4-methylstyrene

Mortamet, A. C. and Pethrick, R. A. (2012) Redox initiated free radical polymerization of 4-methylstyrene. Journal of Applied Polymer Science, 123 (3). pp. 1539-1547. ISSN 0021-8995

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Studies of the thermally initiated polymerization of 4-methylstyrene using alkylperoxide in conjunction with cobalt and tertiary amine catalysts are reported. Addition of cobalt salts leads to a facile low temperature initiation of the polymerization process. The polymerization process was investigated using differential scanning calorimetry [DSC] and vibrating probe rheological measurements. Color changes which occur when the cobalt complex and peroxide are combined were studied using UV-visible spectroscopy. The kinetics of polymerization was investigated using two different cobalt complexes. The initiation step in the polymerization is the conversion of the cobalt (II) to cobalt (III). The presence of the tertiary amine does not affect the oxidation state of the cobalt complex. The cobalt (III) complex gives a better rate of conversion than the cobalt (II) complex. The polymerization process is discussed in terms of redox reaction between the cobalt complex and the alkyperoxide. At low temperatures, the rate of conversion obeys simple Arrhenius kinetics. At higher temperatures the effects of gelation and catalysts inhibition influence the polymerization process. The polymerization process is sensitive to the level of available oxygen during the initiation step and inhibition by aldehyde is observed.