Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing

Li, M. H. and Hayward, G. (2012) Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing. Sensors, 12 (1). pp. 42-54. ISSN 1424-8220

[img]
Preview
PDF - Published Version
Download (678Kb) | Preview

    Abstract

    This paper addresses the challenging problem of ultrasonic non-destructive evaluation (NDE) imaging with adaptive transducer arrays. In NDE applications, most materials like concrete, stainless steel and carbon-reinforced composites used extensively in industries and civil engineering exhibit heterogeneous internal structure. When inspected using ultrasound, the signals from defects are significantly corrupted by the echoes form randomly distributed scatterers, even defects that are much larger than these random reflectors are difficult to detect with the conventional delay-and-sum operation. We propose to apply adaptive beamforming to the received data samples to reduce the interference and clutter noise. Beamforming is to manipulate the array beam pattern by appropriately weighting the per-element delayed data samples prior to summing them. The adaptive weights are computed from the statistical analysis of the data samples. This delay-weight-and-sum process can be explained as applying a lateral spatial filter to the signals across the probe aperture. Simulations show that the clutter noise is reduced by more than 30 dB and the lateral resolution is enhanced simultaneously when adaptive beamforming is applied. In experiments inspecting a steel block with side-drilled holes, good quantitative agreement with simulation results is demonstrated

    Item type: Article
    ID code: 40180
    Keywords: transducer array, adaptive beamforming, ultrasound imaging, constrained least-squares, reduction, optimal apodization design, non-destructive evaluation (NDE), ultrasound nondestructive evaluation, NDE, imaging, Electrical engineering. Electronics Nuclear engineering, Biochemistry, Atomic and Molecular Physics, and Optics, Analytical Chemistry, Electrical and Electronic Engineering
    Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
    Department: Faculty of Engineering > Electronic and Electrical Engineering
    Technology and Innovation Centre > Sensors and Asset Management
    Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 22 Jun 2012 14:03
    Last modified: 27 Mar 2014 23:31
    URI: http://strathprints.strath.ac.uk/id/eprint/40180

    Actions (login required)

    View Item

    Fulltext Downloads: