Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Development and validation of a fluorescence method to follow the build-up of short peptide sequences on solid 2D surfaces

Zelzer, Mischa and Scurr, David J. and Alexander, Morgan R. and Ulijn, Rein V. (2012) Development and validation of a fluorescence method to follow the build-up of short peptide sequences on solid 2D surfaces. ACS Applied Materials and Interfaces, 4 (1). pp. 53-58. ISSN 1944-8244

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The modification of material surfaces with short peptide sequences has become an essential step in many biotechnological and biomedical applications. Due to their simple architecture compared to more complex 3D substrates, 2D surfaces are of particular interest for high throughput applications and as model surfaces for dynamic or responsive surface modifications. The decoration of these surfaces with peptides is commonly accomplished by synthesizing the peptide first and subsequently transferring it onto the surface of the substrate. Recently, several procedures have been described for the synthesis of peptides directly onto a 2D surface, thereby simplifying and accelerating the modification of flat surfaces with peptides. However, the wider use of these techniques requires a routine method to monitor the amino acid build-up on the surface. Here, we describe a fast, inexpensive and nondestructive fluorescence based method which is readily accessible to follow the amino acid build-up on solid 2D samples.