Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Development and validation of a fluorescence method to follow the build-up of short peptide sequences on solid 2D surfaces

Zelzer, Mischa and Scurr, David J. and Alexander, Morgan R. and Ulijn, Rein V. (2012) Development and validation of a fluorescence method to follow the build-up of short peptide sequences on solid 2D surfaces. ACS Applied Materials and Interfaces, 4 (1). pp. 53-58. ISSN 1944-8244

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The modification of material surfaces with short peptide sequences has become an essential step in many biotechnological and biomedical applications. Due to their simple architecture compared to more complex 3D substrates, 2D surfaces are of particular interest for high throughput applications and as model surfaces for dynamic or responsive surface modifications. The decoration of these surfaces with peptides is commonly accomplished by synthesizing the peptide first and subsequently transferring it onto the surface of the substrate. Recently, several procedures have been described for the synthesis of peptides directly onto a 2D surface, thereby simplifying and accelerating the modification of flat surfaces with peptides. However, the wider use of these techniques requires a routine method to monitor the amino acid build-up on the surface. Here, we describe a fast, inexpensive and nondestructive fluorescence based method which is readily accessible to follow the amino acid build-up on solid 2D samples.