Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug

Boateng, J. S. and Matthews, Kerr H. and Auffret, Anthony D. and Humphrey, Mike J. and Eccleston, Gillian M. and Stevens, Howard N. (2012) Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug. Drug Development and Industrial Pharmacy, 38 (1). pp. 47-54. ISSN 0363-9045

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Drug release characteristics of freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose have been investigated and compared. In vitro drug dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 272 nm using distilled water. The dissolution profiles of hydrochlorothiazide from the wafers and films were compared by determining the rates of drug release, estimated from the % release versus time profiles and calculating their difference (f1) and similarity (f2) factors. The effects of drug loading, polymer content and amount of glycerol (GLY) (films) on the drug release characteristics of both formulations were investigated. Both the wafers and films showed sustained type release profiles that were best explained by the Korsmeyer–Peppas equation. Changes in the concentration of drug and GLY (films) did not significantly alter the release profiles whilst increasing polymer content significantly decreased the rate of drug release from both formulations. The rate of release was faster from the wafers than the corresponding films which could be attributed to differences in the physical microstructure. The results show the potential of employing both formulations in various mucosal drug delivery applications.

Item type: Article
ID code: 40168
Keywords: polymers, mechanism, formulation, lyophilized nasal insert, HPMC, release mechanism, delivery-systems, carboxymethylcellulose, drug dissolution, matrix tablets, ketoprofen, dissolution, mucosal delivery, surfaces, hydrochlorothiazide, Pharmacy and materia medica, Organic Chemistry, Drug Discovery, Pharmacology
Subjects: Medicine > Pharmacy and materia medica
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences > Pharmaceutical Sciences
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 22 Jun 2012 10:54
Last modified: 27 Mar 2014 10:11
URI: http://strathprints.strath.ac.uk/id/eprint/40168

Actions (login required)

View Item