Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Linearly tapered discharge capillary waveguides as a medium for a laser plasma wakefield accelerator

Abu-Azoum, Salima Saleh and Wiggins, Mark and Ersfeld, B. and Hart, K. and Vieux, G. and Yang, X. and Welsh, G. H. and Issac, R. C. and Reijnders, M. P. and Jones, D. R. and Jaroszynski, Dino A. (2012) Linearly tapered discharge capillary waveguides as a medium for a laser plasma wakefield accelerator. Applied Physics Letters, 100. ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Gas-filled capillary discharge waveguides are commonly used as media for plasma wakefield accelerators. We show that effective waveguides can be manufactured using a femtosecond laser micromachining technique to produce a linearly tapered plasma density, which enables the energy of the accelerator to be enhanced significantly. A laser guiding efficiency in excess of 82% at sub-relativistic intensities has been demonstrated in a 40 mm long capillary with a diameter tapering from 320 μm to 270 μm, which gives rise to an on-axis, time-averaged plasma density that varies from 1.0 × 1018 cm−3 to 1.6 × 1018 cm−3.