Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Modelling generation and infrastructure requirements for transition pathways

Barnacle, Malcolm and Robertson, Elizabeth Margaret and Galloway, Stuart and Barton, John and Ault, Graham (2012) Modelling generation and infrastructure requirements for transition pathways. Energy Policy, 52. pp. 60-75. ISSN 0301-4215

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

With national targets to reduce carbon emissions enforced by international accords, the UK's energy sector will move towards its low carbon future through political, societal and technological drivers. Three Transition Pathway narratives have been developed to describe three different evolutions of the UK energy sector out to 2050. This paper details two tools that have been combined to assess the robustness and rationale of these three energy futures. The future energy scenario assessment (FESA) tool is used to develop pathway specific large-scale generation mixes that meet expected demands on both a yearly and hourly time step basis. The multi-objective transmission reinforcement planning (MOTRiP) tool is used to generate a set of electrical network plans for the assessment of expected electrical infrastructure requirements, following the application of the future generation mixes to the current GB electrical transmission network. The results, detailed throughout this paper, demonstrate that the combination of FESA's detailed temporal analysis and MOTRiP's comprehensive geographical analysis provides a high-quality holistic examination of the Transition Pathways scenarios, assessing the need for national infrastructure reinforcements with the changing demand and generation patterns.