Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Optimizing pentacene growth in low-voltage organic thin-film transistors prepared by dry fabrication techniques

Gupta, Swati and Chinnam, Krishna Chytanya and Zelzer, Mischa and Ulijn, Rein and Gleskova, Helena (2012) Optimizing pentacene growth in low-voltage organic thin-film transistors prepared by dry fabrication techniques. In: 2012 Materials Research Society Spring Meeting - Symposium J – Organic and Hybrid-Organic Electronics. MRS Symposium Proceedings, 1435 . Materials Research Society.

[img]
Preview
PDF (Gupta-etal-MRSSM-2012-Optimizing-pentacene-growth-in-low-voltage-organic-thin-film)
Gupta_etal_MRSSM_2012_Optimizing_pentacene_growth_in_low_voltage_organic_thin_film.pdf - Accepted Author Manuscript

Download (323kB) | Preview

Abstract

We have studied the effect of pentacene purity and evaporation rate on low-voltage organic thin-film transistors (OTFTs) prepared solely by dry fabrication techniques. The maximum field-effect mobility of 0.07 cm2/Vs was achieved for the highest pentacene evaporation rate of 0.32 Å/s and four-time purified pentacene. Four-time purified pentacene also led to the lowest threshold voltage of -1.1 V and inverse subthreshold slope of ~100 mV/decade. In addition, pentacene surface was imaged using atomic force microscopy, and the transistor channel and contact resistances for various pentacene evaporation rates were extracted and compared to field-effect mobilities.