Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Optimizing pentacene growth in low-voltage organic thin-film transistors prepared by dry fabrication techniques

Gupta, Swati and Chinnam, Krishna Chytanya and Zelzer, Mischa and Ulijn, Rein and Gleskova, Helena (2012) Optimizing pentacene growth in low-voltage organic thin-film transistors prepared by dry fabrication techniques. In: 2012 Materials Research Society Spring Meeting - Symposium J – Organic and Hybrid-Organic Electronics. MRS Symposium Proceedings, 1435 . Materials Research Society.

[img]
Preview
PDF (Gupta-etal-MRSSM-2012-Optimizing-pentacene-growth-in-low-voltage-organic-thin-film)
Gupta_etal_MRSSM_2012_Optimizing_pentacene_growth_in_low_voltage_organic_thin_film.pdf - Accepted Author Manuscript

Download (323kB) | Preview

Abstract

We have studied the effect of pentacene purity and evaporation rate on low-voltage organic thin-film transistors (OTFTs) prepared solely by dry fabrication techniques. The maximum field-effect mobility of 0.07 cm2/Vs was achieved for the highest pentacene evaporation rate of 0.32 Å/s and four-time purified pentacene. Four-time purified pentacene also led to the lowest threshold voltage of -1.1 V and inverse subthreshold slope of ~100 mV/decade. In addition, pentacene surface was imaged using atomic force microscopy, and the transistor channel and contact resistances for various pentacene evaporation rates were extracted and compared to field-effect mobilities.