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1 Introduction

The motion of bodies subject to inhomogeneous gravitational fields is a classical
subject of research in the context of celestial mechanics. In recent years this type
of research has become important to future planned missions of spacecraft to
the moon and asteroids in addition to asteroid deflection missions such as ESA’s
“Don Quijote” concept [7]. The initial research undertaken in this area has been
on the study of the effect of the Earth’s inhomogeneous gravitational field on
the motion of natural and artificial satellites, that is, artificial satellite theory
for small and moderate eccentricities [11]. More recent studies have turned to
research the effects on motion of the inhomogeneous gravitational field of other
solar system bodies, including the Moon [1] and asteroids [22]. The analysis of
spacecraft motion about these bodies is particularly challenging as they typically
feature shapes and density distributions more irregular than those of planets.
Such irregularities break symmetries and require more complicated analytical
expressions for their description and increasing the complexity involved in such
studies.

Numerical methods are today widely used to study the trajectories of ob-
jects orbiting specific irregular bodies [14]. Disadvantages of numerical methods
in generating useful spacecraft trajectories are that they can be highly com-
putational and require a complete re-design for different bodies. Analytical
methods, by contrast, have the potential to rapidly identify useful natural mo-
tions for general bodies with inhomogeneous gravitational fields. Furthermore,
analytical methods can provide a full dynamical picture of the motion around
irregular bodies that can be used to search and study particular classes of useful
orbits. However, current analytical methods are only used in a limited and semi-
numerical way (meaning that analytical expansions constitute the first step in
such studies, which are then typically carried out from a numerical standpoint
[23]). The main drawback of analytical methods is that their application in the
case of highly inhomogeneous bodies requires extensive symbolic computations
involving algebraic manipulations. However, standard and specialist algebraic
software is constantly improving in its computational ability to perform alge-
braic manipulations.

The potential of this software as well as the evolution of standard symbolic
tools such as Maple, Mathematica or Piranha ([4], [5]) means that a fully ana-
lytical method for studying small bodies in motion subject to highly inhomoge-
neous gravitational fields using perturbative methods is now feasible. However,
the current theory needs to be generalised so that perturbation methods can be
implemented algorithmically to high-order. In this report we develop a general
high-order analytical perturbative method for studying inhomogeneous gravi-
tational fields. It is then shown that current state-of-the-art symbolic software
tools such as Mathematica and Pirahna can easily cope with the extensive ma-
nipulations required to implement this high-order perturbative theory in prac-
tice.

The basic principle in analytical perturbative methods is to consider a com-
plex physical system as the aggregate of a well-known (Hamiltonian) system and
some perturbation. The unperturbed part is exactly solvable (integrable) and
accounts for the dominant features of the system; the perturbed part, which is
typically not solvable exactly (and renders a non-integrable Hamiltonian sys-
tem), induces a deviation from the unperturbed integrable model and accounts

3



for the finer details of the behavior of the system. In celestial mechanics, the
exactly-solvable unperturbed model is often the two-body problem, consisting
of two point masses moving under reciprocal gravitational attraction. The tra-
jectories followed by the two particles are conic sections, which can be described
by the classical six orbital elements a (semi-major axis), e (eccentricity), i (in-
clination), w (argument of percenter), W (longitude of the ascending node) and
M (mean anomaly at epoch). In the two-body problem, these orbital elements
are constants of motion. When this simple model is complicated by the addition
of more realistic features, such as additional and/or non-spherical bodies, the
resulting system is generally not integrable.

Methods based on the variation of parameters have led to a number of im-
portant classical results in celestial mechanics, such as the existence of critical
inclinations and of geosynchronous orbits, as well as the seminal works on ana-
lytical ephemerides by Charles-Eugene Delaunay and the discovery of the planet
Neptune [18]. The approaches used in these classical works are not suitable for
problems of higher complexity because of the number and type of algebraic ma-
nipulations involved. This reason motivated the development of methods based
on Hamiltonian formalism and canonical transformations through Lie series in
the 60s, which can be considered as the basis of modern Celestial Mechanics
[9]. The standpoint adopted in these seminal works was that of developing a
technique that could be efficiently programmed into computer languages, thus
delegating to a machine the task of performing the extensive amounts of calcu-
lations involved in perturbative methods. Such a standpoint has today become
essential and the increasing power of computers allows tackling increasingly
complex problems. Recent results on lunar orbital motion, on the long-term
propagation and stability of the Solar System [17], on the peculiar motions of
Jupiter and Saturn moons have all been enabled by these approaches, which re-
quire two fundamental elements: the method and a fast and efficient computer
algebra system.

In this report we show that modern computer performances and state-of-the-
art algebraic manipulator software are sufficiently developed to carry out our
generalised analytical perturbative theory. This report addresses three technical
aspects to develop a general perturbative theory and illustrates its power by
applying it to investigate the inhomogeneous gravitational fields of asteroids.

In the initial stage a truncated Hamiltonian formulation of a spacecraft in
motion about an asteroid, appropriate for implementation in Piranha or Math-
ematica is formulated. The first phase of the study involves deriving the per-
turbing potential U(x) which is the gravitational potential of the inhomogeneous
body uniformly rotating around the z axes. This investigation found inconsis-
tencies in the literature when converting from the original co-ordinates to the
required Nodal-polar elements. In particular there is an error in the Poisson se-
ries representation of the potential in Nodal-polar elements in [20]. To confirm
the correct equations in Nodal-polar elements two independent derivations were
undertaken, using two different approaches, which confirms the correct repre-
sentation in Nodal-polar elements.

A general perturbative theory is then presented which considers all the terms
of the gravitational potential. This generalises previous methods in the liter-
ature which have previously only considered first order terms to construct a
Hamiltonian formulation of the problem. Therefore, the proposed perturbative
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theory presents a method to derive more accurate mathematical descriptions of
the motions, which in turn enables the accurate identification of frozen orbits.
One possible advantage of this approach is that it allows frozen orbits to be
identified rapidly at the preliminary design stage. To this end once a particular
frozen orbit is identified it could be employed in a numerical optimiser to fine
tune the natural orbit in the full model under the effect of all relevant orbital
perturbations. These frozen orbits could then be used as reference trajectories
in missions that require close inspection of asteroids.An illustration of the de-
veloped general perturbative method to identify frozen orbits (including quasi-
frozen orbits) for Eros 433 is presented. The method focuses on the relegation
of the argument of node to arbitrary order [13] and a Delaunay normalisation
[12] which reduces the complexity of the model, essentially reducing the number
of degrees of freedom to a single degree of freedom. The resulting single degree
of freedom model then allows the computation of frozen orbits using a simple
low-dimensional root finder. Although the method is highly computational it
is shown that a completely automated relegation of the argument of node to
arbitrary order is feasible using standard technical computing software such as
Mathematica and specialist algebraic manipulation software such as Piranha
(an algebraic software tool developed by ACT).

2 The dynamical system

The initial stage of the project is dedicated to the formulation of a Hamiltonian
model for the motion of a massless spacecraft in an inhomogeneous gravitational
field. Such field is generated by a small body, uniformly rotating around the
“z-axis” of the reference frame with constant angular velocity ω̂ = [0, 0, ω].
It is therefore convenient to formulate the dynamics in a rotating frame of
reference, thus describing it with the Hamiltonian:

H(x,X) = 1
2 (X ·X)− ω̂(x×X) + U(x) (1)

where x, X ∈ R
3 are respectively the position coordinates and conjugate mo-

menta of the spacecraft, and the equations of motion are:

{

ẋ = ∂
∂X
H(x,X)

Ẋ = − ∂
∂x
H(x,X)

(2)

The perturbing potential U(x) is the gravitational potential of the inhomo-
geneous body uniformly rotating around the z axes and with the assumption
of a homogeneous internal density distribution. Due to inconsistencies in the
literature in the statement of the gravitational potential it is derived here inde-
pendently using two completely different approaches. This was undertaken to
verify the correct representation of the gravitational potential:

The Hamiltonian is expressed in the Nodal-Polar variables r, θ, and ν, which,
as explained in Appendix 9, are the satellite distance from the origin, the argu-
ment of latitude (i.e the angular distance of the spacecraft from the line of the
ascending node on the orbital plane) and right ascension of the ascending node,
that is the longitude of the ascending node respectively.

5





reference frame Oxyz. The gravity potential of such a continuous mass distribu-
tion on an external point P set in r ∈ R

3 can be obtained from (6) substituting
the sum with an integral over the volume of the body, namely:

U(r) = −G
∫

V

ρ(r′)

|r− r′|dV (7)

where ρ(r′) is the density of the body and dV is the infinitesimal element of
volume (i.e. dM = ρ(r′)dV ) and V is the volume of the body.
Notice that, to get back to (5) it is sufficient to impose the spherical symmetry
property, that is the radial distribution of density ρ(r̂) = ρ(−r̂), ∀r̂ ∈ B.
With a few algebraic manipulations it can be shown that:

U(|r|, ψ) = −G
∫

V

ρ(r′)
√

|r|2 − 2r · r′ + |r′|2
dV

= − G
|r|

∫

V

ρ(r′)
√

1− 2 |r′|
|r| cos (ψ) +

(

|r′|
|r|

)2
dV,

(8)

where ψ is the colatitude of r′ over r i.e. the angle between r and r′.
Indicating with Pn(X) the Legendre polynomial of degree n, the expansion

(1− 2XZ + Z2)−
1
2 =

∞
∑

n=0

ZnPn(X) (9)

is now used, which can be demonstrated by the binomial theorem generalized
for all exponents (other than only nonnegative integers).

Calling r = |r| and r′ = |r′| and substituting X = cos (ψ) and Z = r′

r
yields,

for r′

r
< 1 (ray of convergence of the series):

1
√

1− 2 r′

r
cos (ψ) +

(

r′

r

)2
=

∞
∑

n=0

(

r′

r

)n

Pn(cos (ψ)). (10)

Then, substituting into the potential (8), yields, for r′

r
< 1:

U(r, ψ)) = −G
r

∫

V

∞
∑

n=0

(

r′

r

)n

Pn(cos (ψ))ρ(r
′)dV. (11)

The condition r′

r
< 1 implies that the model is valid only outside the reference

sphere that is the sphere circumscribing the asteroid.
Expressing the angle ψ in terms of the latitude δ and longitude λ we obtain

that:
cosψ = sin δ sin δ′ + cos δ cos δ′ cos (λ− λ′) (12)

and the generic Legendre Polynomial Pn(cosψ) decomposes to:

Pn(cosψ) =

n
∑

m=0

(

(2− δm,0)
(n−m)!

(n+m)!
Pm
n (sin δ)Pm

n (sin δ′) cos (m(λ− λ′))

)

(13)
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U(r, δ, λ) = −GM
r

∞
∑

n=0

(α

r

)n
n
∑

m=0

(−1)m (Cn,m cos (mλ) + Sn,m sin (mλ))

Pm
n (sin δ)

(17)
Calling:

F̄1
n,m(λ, δ) := (−1)mPm

n (sin δ) cos (mλ)
F̄2

n,m(λ, δ) := (−1)mPm
n (sin δ) sin (mλ)

where, using (104) and (106):

F̄1
n,m(λ, δ) := (−1)mPm

n (sin δ) cos (mλ)

= (cos δ)mn!2m!2

2n

n
∑

j=0

min{j,m}
∑

ℓ=max{0,j+m−n}

⌊

m
2

⌋

∑

p=0

(

(−1)j+ℓ+p·

· 1
(j)!(n−j)!ℓ!(m−ℓ)!(n−m−j+ℓ)!(j−ℓ)!(2p)!(m−2p)! ·

·(1 + sin δ)n−m−j+ℓ(1− sin δ)j−ℓ cos (λ)
m−2p

sin (λ)
2p
)

F̄2
n,m(λ, δ) := (−1)mPm

n (sin δ) sin (mλ)

= (cos δ)mn!2m!2

2n

n
∑

j=0

min{j,m}
∑

ℓ=max{0,j+m−n}

⌊

m−1
2

⌋

∑

p=0

(

(−1)j+ℓ+p·

· 1
(j)!(n−j)!ℓ!(m−ℓ)!(n−m−j+ℓ)!(j−ℓ)!(2p+1)!(m−2p−1)! ·

·(1 + sin δ)n−m−j+ℓ(1− sin δ)j−ℓ cos (λ)
m−2p−1

sin (λ)
2p+1

)

(18)
Therefore the potential takes the form:

U(r, δ, λ) = −GM
r

∞
∑

n=0

(α

r

)n
n
∑

m=0

(

Cn,mF̄1
n,m(λ, δ) + Sn,mF̄2

n,m(λ, δ)
)

(19)

Finally the potential is expressed in the Nodal-Polar coordinates, by (3), which
yields:
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F1
n,m(I, θ, ν) = 1

2nm!2n!2
n
∑

j=0

min{j,m}
∑

ℓ=max{0,j+m−n}

⌊m
2 ⌋
∑

p=0

(

(−1)j+ℓ+p·

·
(

1
j!(n−j)!ℓ!(m−ℓ)!(n−m−j+ℓ)!(j−ℓ)!(2p)!(m−2p)!

)

(1 + sin (θ) sin (I))n−m−j+ℓ·

·(1− sin (θ) sin (I))j−ℓ(cos (θ) cos ν − cos (I) sin (θ) sin (ν))m−2p·

·(cos (θ) sin (ν) + cos (I) sin (θ) cos (ν))2p
)

(20)
and

F2
k,m(I, θ, ν) = 1

2nm!2n!2
n
∑

j=0

min{j,m}
∑

ℓ=max{0,j+m−n}

⌊m−1
2 ⌋
∑

p=0

(

(−1)j+ℓ+p·

·
(

1
j!(n−j)!ℓ!(m−ℓ)!(n−m−j+ℓ)!(j−ℓ)!(2p+1)!(m−2p−1)!

)

·

·(1 + sin (θ) sin (I))n−m−j+ℓ(1− sin (θ) sin (I))j−ℓ·

·(cos (θ) cos ν − cos (I) sin (θ) sin (ν))m−2p−1·
·(cos (θ) sin (ν) + cos (I) sin (θ) cos (ν))2p+1

)

(21)

where it should be noted that, in F1
n,m(λ, δ), the term

(

1
D

)m
arising by (98)

from
cos (λ)

m−2p
sin (λ)

2p
in (18) cancels with the (cos δ)m = Dm in the same for-

mula, and analogously in F2
n,m(λ, δ) where

(

1
D

)m
arises from

cos (λ)
m−2p−1

sin (λ)
2p+1

.

The potential becomes:

U(r, θ, ν) = −GM
r

∞
∑

n=0

(α

r

)n
n
∑

m=0

(

Cn,mF1
n,m(I, θ, ν) + Sn,mF2

n,m(I, θ, ν)
)

.

(22)

2.2 The gravitational potential (Second Approach)

As there are some discrepancies between the expression of the gravitational po-
tential found in this work and the literature (i.e. [20] or [21]), it is necessary
to verify the equation by deriving the equations using a completely different
approach. now want to provide a second approach for deriving the gravitational
potential, and get it into the Wittaker Nodal-Polar variables, The procedure
is undertaken using the non scaled spherical harmonics and Wigner’s rotation
theorem as follows.
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Definition 1 The non scaled spherical harmonics Y m
n (δ, λ) are the angular por-

tion of the solution to Laplace’s equation in spherical coordinates where az-
imuthal symmetry is not present, which can be expressed as

Y m
n (δ, λ) := Pm

n (sin δ)eımλ (23)

Getting Back to the formulation of the potential in (11) we apply the addition
formula for non scaled spherical harmonics [16]:

Pn(cosψ) = ℜ
[

n
∑

m=0

(−1)m(2− δ0,m)Y −m
n (δ, λ)Y m

n (δ′, λ′)

]

(24)

Thus obtaining:

U(r, δ, λ)) = −G
r

∫

V

∞
∑

n=0

(

r′

r

)n

ℜ
[

n
∑

m=0

(−1)m(2− δ0,m)Y −m
n (δ, λ)Y m

n (δ′, λ′)

]

·

·ρ(r′)dV

= −GM
r

∞
∑

n=0

ℜ
[

n
∑

m=0

(−1)m
(α

r

)n

Y −m
n (δ, λ)

(

1

M

∫

V

(

r′

α

)n

(2− δ0,m)·

·Y m
n (δ′, λ′)ρ(r′)dV )]

= ℜ
[

−GM
r

∞
∑

n=0

n
∑

m=0

(α

r

)n (n+m)!

(n−m)!
Y −m
n (δ, λ)

(

1

M

∫

V

(

r′

α

)n

(2− δ0,m)·

· (n−m)!
(n+m)!Pn,m(sin δ′)eımλ′

ρ(r′)dV
)]

= ℜ
[

−GM
r

∞
∑

n=0

n
∑

m=0

(α

r

)n (n+m)!

(n−m)!
Y −m
n (δ, λ)Kn,m

]

,

(25)
where Kn,m = Cn,m + ıSn,m and Cn,m and Sn,m are as in (15) 1.

Now we apply Wigner’s rotation theorem for non scaled spherical harmonics
(see [27]) in order to get to the nodal polar variables.

Theorem 1 ∀n, m ∈ N, n, m let be Y m
n (δ, λ) the spherical harmonics expressed

in terms of the latitude δ and longitude λ in a system of reference Ox̂,ŷ,ẑ. Then
the expression for Y m

n (δ, λ) in terms of the latitude ∆ and longitude Λ in another
system of reference Ox̂,ŷ,ẑ, obtained by the composition of three rotations of
angles α, β and γ (around the x̂ axes, the rotated ẑ, and the rotated x̂ axes
respectively), is given by:

Y m
n (δ, λ) =

n
∑

j=−n

Dn
j,m(−α,−β,−γ)Y j

n (∆,Λ) (26)

1 Cn,m and Sn,m are the so called “Stokes coefficient” [16]
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where
Dn

j,m(−α,−β,−γ) = eıj(α+
π
2 )eım(γ−π

2 )dnj,m(−β) (27)

and

dnj,m(−β) =
∑min{n−m,n+j}

t=max {0,j−m}(−1)m−j+3t (n−j)!(n+m)!
t!(n+j−t)!(n−m−t)!(m−j+t)! ·

·
(

cos
(

β
2

))2n−(m−j+2t) (

sin
(

β
2

))m−j+2t
(28)

We want to apply this theorem by setting the second system of reference to be
the one where the spacecraft position vector is (0, 0, r) therefore the three angles
α, β and γ are set to be θ, I and ν, the argument of latitude, the inclination
of the orbital plane and namely the right ascension of the ascending node (see
Appendix 9); moreover it must be noticed that in such system of reference the
new latitude ∆ and longitude Λ of the spacecraft will be both equal to zero as
we have set its new position vector to be (0, 0, r). Therefore (25) becomes:

U(r, δ, λ)) = ℜ



−GM
r

∞
∑

n=0

n
∑

m=0

(α

r

)n (n+m)!

(n−m)!

n
∑

j=−n

Dn
j,−m(−α,−β,−γ)

Y j
n (0, 0)Kn,m

]

= ℜ



−GM
r

∞
∑

n=0

n
∑

m=0

(α

r

)n (n+m)!

(n−m)!

n
∑

j=−n

Dn
j,−m(−θ,−I,−ν)Y j

n (0, 0)Kn,m





= ℜ



−GM
r

∞
∑

n=0

n
∑

m=0

(α

r

)n (n+m)!

(n−m)!

n
∑

j=−n

eı(jθ−mν)eı
π
2 (k+m)dnj,−m(−I) ·

·P j
n(0)Kn,m

]

= −GM
r

∞
∑

n=0

n
∑

m=0

(α

r

)n (n+m)!

(n−m)!

n
∑

j=−n

min{n+m,n+j}
∑

ℓ=max {0,j+m}
(−1)m−j+3ℓ·

· (n−j)!(n−m)!
ℓ!(n+j−ℓ)!(n+m−ℓ)!(−m−j+ℓ)!

(

cos
(

I
2

))2n−(−m−j+2ℓ) (
sin
(

I
2

))−m−j+2ℓ ·

·
(

(−1)j((n+ j)≡2 − 1) (−1)
n−j
2 (n+j−1)!!

2
n−j
2 (n−j

2 )!

)

·

·
(

Cn,m

(

cos (jθ −mν) cos
(

π
2 (j +m)

)

− sin (jθ −mν) sin
(

π
2 (j +m)

))
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+Sn,m

(

− sin (jθ −mν) cos
(

π
2 (j +m)

)

− cos (jθ −mν) sin
(

π
2 (j +m)

)))

= −GM
r

∞
∑

n=0

n
∑

m=0

(α

r

)n
n
∑

j=−n

min{n+m,n+j}
∑

ℓ=max {0,j+m}
(−1)m−j+3ℓ·

· (n−j)!(n+m)!
ℓ!(n+j−ℓ)!(n+m−ℓ)!(−m−j+ℓ)!

(

cos
(

I
2

))2n−(−m−j+2ℓ) (
sin
(

I
2

))−m−j+2ℓ ·

·(−1)
n+j
2

1
2n

(n+j)!

(n+j
2 )!(n−j

2 )!
((n+ j)≡2 − 1) (n+m)!

2n(n−m
2 )!(n+m

2 )!
·

·
(

Cn,m

(

cos (jθ −mν) cos
(

π
2 (j +m)

)

− sin (jθ −mν) sin
(

π
2 (j +m)

))

+Sn,m

(

− sin (jθ −mν) cos
(

π
2 (j +m)

)

− cos (jθ −mν) sin
(

π
2 (j +m)

)))

(29)
calling

Ḡn,m,j(I) =

min{n+m,n+j}
∑

ℓ=max{0,j+m}
(−1)m+3ℓ−j (n+m)!(n− j)!

ℓ!(n+ j − ℓ)!(n+m− ℓ)!(ℓ−m− j)
·

·(−1)
n+j
2

1
2n

(n+j)!

(n+j
2 )!(n−j

2 )!
((n+ j)≡2

− 1) cos ( I2 )
2n+m+j−2ℓ

sin ( I2 )
2ℓ−m−j

(30)
the potential can be rearranged as:

U(r, θ, ν) = −GM
r

∞
∑

n=0

(α

r

)n
n
∑

m=0

n
∑

j=−n

Ḡn,m,j(I)·

·
(

Cn,m

(

cos (jθ −mν) cos (π2 (j +m))− sin (jθ −mν) sin (π2 (j +m))
)

+

+Sn,m

(

− sin (jθ −mν) cos (π2 (j +m))− cos (jθ −mν) sin (π2 (j +m))
))

(31)
Finally we express the potential in a way that will be useful to apply the

relegation algorithm described in the next section:

U(r, θ, ν) = −GM
r

∞
∑

n=0

(α

r

)n
n
∑

m=0

n
∑

j=−n

(

G1
n,m,j(I) cos (mν − jθ) + G2

n,m,j(I)·

· sin (mν − jθ)) ,
(32)

with:

G1
n,m,j(I) = Ḡn,m,j(I)

(

Cn,m cos (π2 (j +m))− Sn,m sin (π2 (j +m))
)

G2
n,m,j(I) = Ḡn,m,j(I)

(

Cn,m sin (π2 (j +m)) + Sn,m cos (π2 (j +m))
)

,
(33)

which is completely equivalent to the one in (22)

Remark 1 The direct comparison with the generic formula in [20] and the
restricted one in [21] (considering only the ellipticity and the oblateness terms
C2,0 and C2,2 respectively) highlights some errors in these formulas.
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This work derived the potential using two completely different methods illustrated
in the previous subsections. Both approaches lead to exactly the same result
(i.e. eq. (32)) which infers that there are errors in stated expressions for the
gravitational potential in polar-nodal form in the literature.

Therefore a useful representations of irregular gravitational fields has been de-
rived and verified using two approaches.

3 The relegation of the argument of node ν

The usual technique used for implementing closed form analytical theories is the
Delaunay normalization [12] that converts the principal part of the Hamiltonian
into an integral of the transformed system; however it cannot be directly ap-
plied to our problem as the argument of the node is present in the Hamiltonian.
The presence of the argument of node prevents the standard computation of the
generator of the Lie transformation.
To overcome this problem we first perform a simplification of the Hamiltonian
making use of Deprit’s relegation algorithm [13]. This procedure uses repeated
iterations of a transformation which decreases the importance of the perturba-
tion in the new Hamiltonian until it can be neglected.

Taking the Hamiltonian (4) with the potential expressed as in (32) we rear-
range it as a power series

H =
∑

k≥0

ǫk

k!
Hk

in the generic small parameter ǫ as:

H(r, θ, ν, R,Θ, N) = 1
2 (R

2 + Θ2

r2
)− MG

r
− ωN + ǫU(r, θ, ν) (34)

with

U(r, θ, ν) = −GM
rǫ

∞
∑

n=1

(α

r

)n
n
∑

m=0

n
∑

j=−n

(

G1
n,m,j(I) cos (mν − jθ)+

+G2
n,m,j(I) sin (mν − jθ)

)

(35)

and G1
n,m,j(I) and G2

n,m,j(I) as in (33) and Ḡn,m,j(I) as in (30).

Following the algorithm in [13] we now want to “relegate” the action of the
argument of latitude ν to high orders of 1

r
(i.e. to find a Lie transformation

which maps the Hamiltonian into a new one where the variable ν appears only
from a certain, fixed power n of 1

rn
on).

3.1 Lie transformations

In order to relegate the action of the angle ν to high orders of the Hamiltonian
an to normalize the trunked Hamiltonian later on we will perform a Lie Trans-
formation. A short description of Deprit’s method for Lie Transformations,
with respect to our application, is here provided, while for a full description of
it and a comparison with the Von Zeipel’s method which determines the Lie
transformations we refer the reader to [9].
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Definition 2 A Lie transformation φ is a one-parameter family of mappings
φ : (y, Y ; ǫ) → (x,X), defined by the solution x(y, Y ; ǫ) and X(y, Y ; ǫ) of the
Hamiltonian system

{

dx
dǫ

= ∂W
∂X

dX
dǫ

= −∂W
∂x

With initial conditions x(y, Y ; 0) = y and X(y, Y ; 0) = Y , and where the func-
tion

W (x,X; ǫ) =
∑

s≥0

ǫs

s!
Ws+1(x,X)

is the generator of the transformation.

Due to the properties of the Hamiltonian systems, the Lie transformation φ is
a completely canonical transformation that maps an Hamiltonian

H(x,X; ǫ) =
∑

s≥0

ǫs

s!
Hs(x,X)

onto an equivalent Hamiltonian K of the form

K(y, Y ; ǫ) =
∑

s≥0

ǫs

s!
Ks(y, Y ; 0).

We call
∆0

WH := H
∆1

WH := ∆WH = LW (H) + ∂H
∂ǫ

∆2
WH := ∆W (∆WH)

...

(36)

where LW (·) is the Lie derivative 2 with respect to W , defined as LW (·) :=
[ · ;W ] where [ · ; · ] stands for the Poisson Brackets 3.
The s elementKs(y, Y ; 0) of the transformed Hamiltonian is given by applying s-
times the Lie derivative generated byW to the Hamiltonian H and substituting
ǫ = 0 therein.

Ks(y, Y ; 0) := (∆s
WH)ǫ=0 (37)

that is:

K1(y, Y ; 0) =
(

[H;W ] + ∂H
∂ǫ

)

ǫ=0

K2(y, Y ; 0) =

(

[
(

[H;W ] + ∂H
∂ǫ

)

;W ] +
∂([H;W ]+ ∂H

∂ǫ )
∂ǫ

)

ǫ=0

...

(38)

However, considering H and W as power series of ǫ:

H(x,X; ǫ) =
∑

s≥0

ǫs

s!
Hs(x,X)

2 Let W (X,x) be a differentiable mapping of A into C. The Lie derivative LW induced
by W is the operator from A to C LW : A → C that maps any function f(X,x) into its
Poisson Bracket with W , namely f(X,x) :→ [f ;W ]

3 Let A be an open subset of Cn×Cn. If the mappings f(X,x) and g(X,x) from A to C

are differentiable in A, the Poisson bracket of f and g ([f ; g]), in that order, is the mapping from
A to C ([f ; g] : A → C) that maps (X,x) → D2f(X,x) ·D1g(X,x)−D1f(X,x) ·D2g(X,x).
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W (x,X; ǫ) =
∑

s≥0

ǫs

s!
Ws+1(x,X)

and the properties of the Poisson brackets, the terms in (38) can be explicitly
derived algorithmically, yielding:

K1(y, Y ; 0) = [H0;W1] +H1

K2(y, Y ; 0) = (H2 + 2[H1;W1] + [[H0;W1];W1]) + [H0,W2]
...

(39)

Which decomposes a Lie transformation into a series of so called homologic
equations

[H0;Ws] + H̃s = Ks ∀s ≥ 1 (40)

where the terms H̃s are found constructing the Lie triangle of provisional ele-
ments

H̃0 := H0

H̃1 := H1 H̃1,0 := H̃1

H̃2 := H2 H̃1,1 H̃2,0 := H̃2

H̃3 := H3 H̃2,1 H̃1,2 H̃3,0 := H̃3

... ... ... ... ...

(41)

by using



















H̃1,0 := H̃1 := H1

H̃i,s−i = Hs +
∑s−2

j=0

(

s−i
j

)

[Hs−j−i;Wj+1] if i = 1, s ≥ 2

H̃i,s−i = H̃i−1,s−i+1 +
∑s−i

j=0

(

s−i
j

)

[H̃i−1,s−j−i + [H0;Ws−j−1];Wj+1]

if i 6= 1, s ≥ 2
(42)

and taking the last element of each row, which, by (42), is given by

H̃1 := H1

H̃s = H̃s−1,1 + [H̃s−1,0 + [H0;Ws−1];W1] ∀s ≥ 2
(43)

Such series of homological equations can be both seen as
- the way to find the coefficients of the transformed Hamiltonian given a gener-
ating function of a Lie transformation
- or a way to find the generating function of the Lie transformation that maps
the initial Hamiltonian into a prescribed one Hamiltonian.

The relegation and the normalization algorithms (see [13] and [12] respec-
tively) are two different methods which will be used to solve the homological
equations.
The normalization is the Lie transformation that maps a Hamiltonian

H =
∑

s≥0

ǫs

s!
Hs
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into an equivalent one which admits the principal term H0 as integral of the
transformed system [10].
The relegation, instead, generalizes the normalization to some exceptional sit-
uations the normalization process cannot deal with (such as secular terms or
small divisors).
For the relegation algorithm, in contrast to normalization, the criteria for se-
lecting the elements of the transformed Hamiltonian

K(Y, y, ǫ) =
∑

s≥0

ǫs

s!
(Ks(Y, y) +Rs(Y, y))

are based not on the principal term H0 = F + G but only on a part of it: the
functionG, which will become the integral of a truncated part of the transformed
system.

3.2 The Relegation Algorithm

The relegation is applied to all those problems where:

• the principal term is a sum H0 = F +G,

• the Poisson bracket [F ;G] is zero

• the Lie derivative LG is semi-simple over a Poisson algebra of functions
P .

Given the function G(X,x), the relegation algorithm is a Lie transformation
in which maps the hamiltonian

H(x,X; ǫ) =
∑

s≥0

ǫs

s!
Hs(x,X)

into an equivalent one of the form:

K(Y, y, ǫ) =
∑

s≥0

ǫs

s!
(Ks(Y, y) +Rs(Y, y))

with K0 = H0(y, Y ) and the coefficients Ks ∈ ker(LG).

The effect of φ on H is best described by saying that φ relegates the action
of G on H to the function

R(Y, y, ǫ) =
∑

s≥1

ǫs

s!
Rs(Y, y)

since [K;G] = [H0;G] + [R;G].

In contrast with normalization, the term Ks may not belong to ker(LG) due
to the presence of the residual Rs. However, in practice the algorithm produces
a useful approximation when the contribution of the residual Rs to Ks decreases
as the iteration count p increases. Ideally, one should choose the function G so
that limp→∞ |Rs| = 0 at each order s. In summary, the relegation algorithm
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acting on the original Hamiltonian H produces two distinct Hamiltonians:
the first one

K =
∑

s≥0

ǫs

s!
Ks =

∑

s≥0

ǫs

s!





p
∑

j=0

(Ks,p) +Rs



 (44)

which is the image of the original system by the relegating transformation φ,
which, in general, does not admit G as an integral,
and the second one

J =
∑

s≥0

ǫs

s!

p
∑

j=0

Ks,p (45)

which is a truncated system, close to the first one, which admits G as an inte-
gral.

For each homological equation

[H0;Ws] + H̃s = Ks (46)

the relegation algorithm starts considering that, as LG is semi-simple, there
∃Ks,0,Ws,0 ∈ P s.t.

{

H̃s = Ks,0 + [Ws,0;G]
Ks,0 ∈ Ker(LG).

(47)

Therefore (46) becomes:

[H0;Ws] + [Ws,0;G] = Ks −Ks,0. (48)

Thus, setting Ws =W ∗
s,0 +Ws,0, (48) becomes:

[H0;W
∗
s ] + [H0 −G;Ws,0] = Ks −Ks,0. (49)

The algorithm continues re-invoking p-times the semi-simplicity of LG, and
finding ∀1 ≤ j ≤ p Ks,j ,Ws,j ∈ P s.t.

{

[H0 −G;Ws,j−1] = Ks,j + [Ws,j ;G]
Ks,j ∈ Ker(LG)

(50)

and setting p-times ∀1 ≤ j ≤ p Ws,j−1 =W ∗
s,j +Ws,j .

Finally the algorithm ends at a certain iteration p setting W ∗
s,p = 0 and

obtaining (49) to become:

Ks =

p
∑

j=0

(Ks,j) +Rs (51)

with Rs := [H0 −G;Ws,p]
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3.3 Application

As suggested in ([21]), we now want to apply the Relegation algorithm to the
Hamiltonian (34) with the potential truncated to the terms of order ∼ 1

rnmax+1

(included), therefore we set:

HK := 1
2 (R

2 + Θ2

r2
)− MG

r

G = −ωN, (52)

obtaining that:
H0 = HK +G
H1 = UnmaxHj = 0 ∀j ≥ 2

(53)

with

Unmax := −GM
rǫ

nmax
∑

n=1

(α

r

)n
n
∑

m=0

n
∑

j=−n

(

G1
n,m,j(I) cos (mν − jθ)+

+G2
n,m,j(I) sin (mν − jθ)

)

(54)

and G1
n,m,j(I), G2

n,m,j(I) as in (33).

It is first noticed that

[ · ;G] = [ · ;−ωN ] = −ω ∂·
∂ν

(55)

and that

[HK ; · ] = [ 12 (R
2 + Θ2

r2
)− MG

r
; · ] = R ∂·

∂r
+ Θ

r2
∂·
∂θ

− (Θ
2

r3
− MG

r2
) ∂·
∂R

(56)

∗ ∗ ∗ ∗ ∗

First Homological Equation:

By (43): H̃1 = H1.
Therefore:

[H0;W1] + Unmax = K1 (57)

First Relegation iteration:

As in (47) the first iteration consists in finding K1,0 and W1,0 such that

{

Unmax = K1,0 + [W1,0;G]
K1,0 ∈ Ker(LG).

(58)

That is
{

Unmax = K1,0 − ω
∂W1,0

∂ν
∂K1,0

∂ν
= 0.

(59)
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ThusK1,0 is the collection of all the terms of Unmax such that their derivative
with respect to ν is zero, namely the collection of all the terms of Unmax which
does not depend on ν, therefore:

K1,0 = −GM
rǫ

nmax
∑

n=1

(α

r

)n
n
∑

j=−n

(

G1
n,0,j(I) cos (−jθ) + G2

n,0,j(I) sin (−jθ)
)

(60)
Then, inverting (59):

W1,0 = − 1
ω

∫

(Unmax −K1,0)dν

= − 1
ω

∫

(−GM
rǫ

nmax
∑

n=1

(α

r

)n
n
∑

m=1

n
∑

j=−n

(

G1
n,m,j(I) cos (mν − jθ)+

+G2
n,m,j(I) sin (mν − jθ)

)

)dν

(61)

which is periodic in ν.

Second Relegation iteration:

By (50) we first evaluate

[H0 −G;W1,0] = R
∂W1,0

∂r
+ Θ

r2
∂W1,0

∂θ
− (Θ

2

r3
− MG

r2
)
∂W1,0

∂R
(62)

with W1,0 is as in (61).
Notice that [H0 −G;W1,0] is still ν-periodic.

Now we have to find K1,1 and W1,1 such that:

{

[H0 −G;W1,0] = K1,1 + [W1,1;G]
K1,1 ∈ Ker(LG)

(63)

That is
{

[H0 −G;W1,0] = K1,1 − ω
∂W1,1

∂ν
∂K1,1

∂ν
= 0

(64)

Thus K1,1 is the collection of all the terms of [H0 −G;W1,0] such that their
derivative with respect to ν is zero, namely the collection of all the terms of
[H0 −G;W1,0] which does not depend on ν, but [H0 −G;W1,0] is periodic in ν,
therefore

K1,1 = 0 (65)

And, inverting (64),

W1,1 = − 1
ω

∫

[H0 −G;W1,0]dν (66)

Other Relegation iterations:
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In complete analogy with the second iteration of the relegation it is found that
∀2 ≤ j ≤ p:

K1,j = 0
W1,j = − 1

ω

∫

[H0 −G;W1,j−1]dν
(67)

Conclusion of Relegation for the first homological equation:

It must be noted that, at each step of relegation 1 ≤ j ≤ p the “remainder”

[H0 −G;W1,j ] = R
∂W1,j

∂r
+ Θ

r2
∂W1,j

∂θ
− (Θ

2

r3
− MG

r2
)
∂W1,j

∂R
(68)

is of order 1
rj+2 .

As we have considered only the potential up to the terms ∼ 1
rnmax+1 we will

stop the relegation algorithm once the reminder is of the same order of the first
neglected terms, i.e. of order ∼ 1

rnmax+2 , thus we set the maximum order of
relegation to be p = nmax − 1.

Thus, once we have relegated nmax−1-times, for the first homological equa-
tion we obtain:

W1 =

p−1
∑

j=0

W1,j

K1 =

p−1
∑

j=0

K1,j +R1 = K1,0

R1 = [H0 −G;W1,nmax−1]

(69)

With K1,0 as in (60) and where in the second equation the reminder has been
dropped at it made of orders higher than 1

rnmax+1 which must be truncated.

Second (and higher) Homological Equations:

By (43), considering that in (53) we have set H2 = 0:
H̃2 = 2[H1,W1] + [[H0;W1];W1].
By direct calculations it can be easily verified that H̃2 ∼ 1

r8
.

Therefore it must be noticed that we have to fix nmax to be greater than 8 to
get any results from the second homological equations.

We set the second homological equation

[H0;W2] + H̃2 = K2 (70)

and start the relegation by setting K2,0 equal to the terms of H̃2 which does

not depend on ν and W2,0 = −ω
∫

(H̃2 −K2,0)dν and so on.
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3.4 Conclusion

As it is almost impossible to deal with so many terms “by hand”, a major com-
ponent of the project has been committed to building two different software
scripts, written in Mathematica and Piranha, which can deal with any arbi-
trary order nmax of terms of the potential as well as any arbitrary degree
smax of homological equations returning as output the transformed Hamiltonian

K(r, θ, R,Θ, N) =

smax
∑

s=0

ǫs

s!
Ks

and the transformation

W (r, θ, ν, R,Θ, N) =

smax
∑

s=0

ǫs

s!
Ws.

Remark 2 Note that fixing the maximum order nmax of terms of the potential
means that all the terms up to Cnmax,nmax and Snmax,nmax are taken into ac-
count, which means a total of (nmax+2)(nmax+1) coefficients of the potential.

Remark 3 It must be remarked that one of the main tasks contained in the
Ariadna study call for proposals was to “determine whether modern computer
performances are sufficiently developed to carry out the development of an ana-
lytical perturbative theory using the Lie series approach for an irregularly-shaped
small body (e.g. asteroid)”. We can conclude that both the Piranha and Math-
ematica software can easily deal with the extensive computations involved when
computing the Lie series associated with the relegation algorithm.

Moreover, as the transformed Hamiltonian K(r, θ, R,Θ, N), obtained from
this process, no longer depends on the argument of the node ν, the variable N
becomes cyclic and therefore −ωN is a constant term, which can be dropped
from the Hamiltonian.

Remark 4 To bring the analysis to the consideration of more than just the first
homological equation represents a generalisation of the usual procedure found in
literature (see for example [21] and [23]). The latter usually considers only the
first Homological equation due to the high number of terms which must be con-
sidered to get a coherent result for the second homological equation.
This, together with the full consideration of all the tesseral and sectorial coeffi-
cients (i.e. not only restricted to the ellipticity and oblateness terms) provides
a more refined approximation of the system than previous theories. This leads
to a more accurate description of the behavior of the system.
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4 Delaunay Normalization

After the elimination of the argument of node the Hamiltonian is equivalent to
the one in the main problem of the artificial satellite, in which the longitude
of the node is cyclic and, hence, the Coriolis term −ωN becomes constant and
may be deleted. Then a Delaunay normalization can be performed, for a fur-
ther reduction of the degrees of freedom, thus transforming the Hamiltonian
into an integrable one. The Delaunay normalization is classically implemented
in closed form, i.e. without using series expansion in the eccentricity, only to
the first order of tesseral/sectorial coefficients and first degree in the homologic
equations. An arbitrary order application for the first homologic equation is
thus developed, enabled by changing the independent variable to be the true
anomaly. It has been demonstrated that such procedure can be carried on in
an automated way up to an arbitrary order of tesseral/sectorial coefficients for
the first Homologic equation, but can only be developed in a semi-automated
way for the higher homologic equations.

In order to perform the Delaunay normalisation the Hamiltonian must be
changed from the Wittaker to the so called Delaunay coordinates.

4.1 Delaunay Coordinates

The Delaunay coordinates are symplectic action-angle variables (L,G,H, ℓ, g, h),
where the angles ℓ, g and h are conjugated to the actions L, G and H respec-
tively, where

• ℓ is the mean anomaly measured from the pericenter;

• g is the argument of the pericenter;

• h is the argument of the node;

• L is related to the major semi-axis, a, by L =
√
GMa;

• G is the total angular momentum of the spacecraft with respect to the As-
teroid (in the inertial frame), related to the eccentricity and the variable

L by e =
√

1− G2

L2 ;

• H is the z-component of the total angular momentum, i.e. H = G cos I.

Moreover the relation between the True anomaly and the Eccentric anomaly u
is defined as:

tan (
f

2
) =

√

1 + e

1− e
tan (

u

2
), (71)

which, in particular, implies

r = a(1− e cosu) = a
1− e2

1 + e cos f
. (72)

A quick derivation of such coordinates is here provided, while a full derivation
can be found in [3] and [8] (also see [15], [25]).
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The change of coordinates which brings from the Wittaker variables to the
Delaunay ones is generated by the function

S =

∫ r

r−(− (GM)2

L2 )

√

−G
2

r2
+ 2

MG
r

− (GM)2

L2
dρ+G(θ − f) +Hν (73)

It is completely canonical as

dℓ ∧ dL+ dg ∧ dG+ dh ∧ dH = dr ∧ dR+ dθ ∧ dΘ+ dν ∧ dN (74)

that is:

R = ∂S
∂r

=
√

−Θ2

r2
+ 2MG

r
− (GM)2

L2

Θ = ∂S
∂θ

= G
N = ∂S

∂ν
= H

ℓ = ∂S
∂L

= ... = u− e sinu
g = ∂S

∂G
= (θ − f)

h = ∂S
∂H

= ν.

(75)

Plus, by Section 6.1.2 we know that

N = G cos I => H = G cos I. (76)

The Hamiltonian obtained by the Relegation algorithm

K0 := H0 = 1
2 (R

2 + Θ2

r2
)− MG

r

K1 = −GM
rǫ

nmax
∑

n=1

(α

r

)n

....
(77)

where we have dropped the Coriolis terms from H0.
In the Delaunay variables the new Hamiltonian

K ′ =
∞
∑

s=0

ǫs

s!
K ′

s

becomes:

K ′
0 = − (GM)2

2L2

K ′
1 = −GM

ǫ

nmax
∑

n=1

αn

(

(a(1− e2))

(1 + e cos f)

)n+1 n
∑

j=−n

(

G1
n,0,j(G,H) cos (−j(f + g))+

+G2
n,0,j(G,H) sin (−j(f + g))

)

....
(78)

4.2 The Normalization algorithm

The full, arbitrary order theory is here illustrated, which, instead of using the
expansions of r and f in powers of the eccentricity, computes the integrals with
respect to ℓ changing the independent variable to be the true anomaly f .
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Definition 3

A formal series J(y, Y, ǫ) =

∞
∑

s=0

ǫs

s!
Js(y, Y ) is said to be in Delaunay normal

form if the Lie derivative LJ0
J is zero, that is [Js, J0] = 0 ∀s ≥ 0.

In our case, as J0 = K ′
0 = − (GM)2

2L2 , the Lie derivative

LJ0(·) =
(GM)2

L3

∂(·)
∂ℓ

therefore the new Hamiltonian J(y, Y, ǫ) =

∞
∑

s=0

ǫs

s!
Js(y, Y ) will be in normal

form if and only if
∂Js
∂ℓ

= 0 ∀s ≥ 1

As in (46) for every homologic equation:

[J0; W̄s] + K̃ ′
s = Js

⇔ − (GM)2

L3
∂W̄s

∂ℓ
+ K̃ ′

s = Js
(79)

with K̃ ′
s found as in (43).

Now, as we want Js to be in Delaunay normal form (⇔ ∂Js

∂ℓ
= 0∀s ∈ N), we set

Js =
1

2π

∫ 2π

0

K̃ ′
sdℓ (80)

This integral is solved by changing the independent variable from ℓ to be the
true anomaly f by the relation

df

dℓ
=
df

du

du

dℓ
=

(

1 + e cos f√
1− e2

)(

1

1− e cosu

)

=
r2

a2
√
1− e2

(81)

Thus, inverting (79), yields the first order of the generating function that is:

W̄s =

∫

L3

(GM)2

(

K̃ ′
s − Js

)

dℓ =

∫

L3

(GM)2

(

K̃ ′
s −

1

2π

∫ 2π

0

K̃ ′
sdℓ

)

dℓ (82)

Remark 5 The script to execute this algorithm in an automated way has been
developed, which normalizes the first homologic equation considering an arbi-
trary number of Stokes coefficients. However, for higher homologic equations,
the process cannot be iterated in an automated way as there appear some terms
with both the mean anomaly ℓ and the true anomaly f which must be solved
considering each singular case alone (i.e. can only be processed with a semi-
automated procedure).

Remark 6 This leads to an integrable, two degrees of freedom, Hamiltonian
which is an arbitrary order in tesseral/sectorial coefficients approximation of
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the initial Hamiltonian for the first homologic equation. Which can now be ap-
plied (using the computer algebra system built) to every specific asteroid in order
to determine possible orbits useful for scientific observational missions such as
frozen orbits.
Moreover, restricting the result to the case where all the Sn,m and Cn,m co-
efficients to be zero except for the ellipticity and oblateness ones, the correct
versions of the integrable Normalized Hamiltonian contained in [21] and [23]
are found.

Finally it must be noted that considering arbitrary order of tesseral/sectorial
coefficients the resulting Hamiltonian, will, in general, contain both the rel-
egated variables G and g, thus containing one variable more than the final
Hamiltonian in [21]. This leads to a system still integrable but where the so-
lution cannot be explicitly solved, i.e.it is no longer “trivially integrable” as in
[21].

5 Frozen Orbits

The Hamiltonian obtained is of the form: J(L,G,H, , g, ) thus the equations
of motion are:

ℓ′(t) = ∂J
∂L

g′(t) = ∂J
∂G

h′(t) = ∂J
∂H

L′(t) = 0
G′(t) = −∂J

∂g

H ′(t) = 0,

(83)

which means that L and H are constants and all the other motions will only
depend on G(t) and g(t).

Definition 4 (Frozen orbit)
A frozen orbit is an orbit in which the Inclination, the Eccentricity and the
Argument of perigee remains constant during the motion.

This in particular implies that such an orbit is then perfectly periodic except
for the orbital plane precession.
Thus, in order to get a frozen orbit we must set to zero

ė = d
dt

√
L2−G2

L
= 0

İ = d
dt
arcsin

√
H
G

= 0
ġ = 0.

(84)

For the relegated system it is equivalent to solve

Ġ = 0
ġ = 0.

(85)
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Thus fixing eccentricity e and inclination I for the desired frozen orbit the
solutions (L0, G0, H0, g0) of the system

Ġ = 0
ġ = 0

e =
√
L2−G2

L

I = arcsin
√
H
G
,

(86)

are the initial conditions that lead to a frozen orbit .
Some examples of frozen orbits have been generated for the asteroid 433 Eros
of the main belt which are contained in the next section.

6 Application

The script developed and provided with the report is divided into three main
parts:
- the relegation of the argument of node
- the change to Delaunay variables and normalization (i.e. averaging over the
mean anomaly)
- the integration of the reduced system.

Fixing the maximum order of coefficients of the potential to be taken into
account nmax (i.e. (nmax+2)(nmax+1) coefficients in total) the system yields
the resulting relegated and normalized Hamiltonians and the functions that
generate the two changes of coordinates that lead to them. Moreover, choosing
a reference asteroid and fixing the initial conditions x0 = (x0, y0, z0) and X0 =
(X0, Y0, Z0) in the cartesian system of reference (or in any other system of
coordinates) it integrates and displays the orbit obtained in the normalized
Delaunay system taken into account all the (nmax + 2)(nmax + 1) terms of
the potential; the accuracy of the orbit obtained will increase with the order of
coefficients taken into account as well as with the degree of homologic equations
normalized and relegated. Finally, fixing a desired eccentricity and inclination,
it gives in output the initial conditions that yield to the frozen orbit required
(if it exist) and display the orbit obtained. Again the accuracy of the result
increases with the number of tesseral/sectorial coefficients taken into account.

6.1 The relegation script

INPUT REQUIRED:
· smax= max order of homologic equations to be considered for the relegation;
· nmax= max degree of tesseral/sectorial coefficients to be included;
OUTPUT:
· Seconds used for the computation
· Hamiltonian in the relegated polar-nodal variables K(r∗, θ∗, , R∗,Θ∗, N∗)
where the ∗ has been dropped to simplify notation.
· The generating function W (r, θ, ν, R,Θ, N) of the transformation of coordi-
nates which is conserved by the relegation (i.e. W (r∗, θ∗, ν∗, R∗,Θ∗, N∗) =
W (r, θ, ν, R,Θ, N)).
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6.2 the normalization script

INPUT REQUIRED:
· it automatically takes the relegated Hamiltonian as input.
OUTPUT:
· Seconds used for the computation
· Hamiltonian in the normalized Delaunay variables J(L,G,H, , g, ) where
the ∗ has been dropped to simplify notation.
· The generating function U(L,G,H, f, l, g, ) of the transformation of coordi-
nates which is conserved by the normalization.

6.3 Integration of the system

INPUT REQUIRED:
· it automatically takes the Notmalized Hamiltonian as input.
· tesseral/sectorial coefficients of the asteroid.
· total mass of the asteroid taken in Kg.
· angular velocity ω of rotation of the asteroid around the z-axes in s−1.
· reference radius in m the asteroid .
OUTPUT:
· Equations of motion of Ġ∗ = −∂J

∂g
and ġ∗ = ∂J

∂G

6.4 Analysis of the computational complexity of the algo-
rithms

The table (6.4) below collects the time used to process the relegation algorithm
using the software Mathematica 6.0, depending on the maximum order nmax

of coefficients to be taken into account (i.e. including all the coefficients up
to Cnmax,nmax and Snmax,nmax) and the number of homologic equations smax

considered. The coefficients marked with ∗ have been estimated by extrapolation
of previous data.

↓ nmax \ smax → 1 2 3 4 5
1 (6 coefficients) 0.015 0.062 0.078 0.109 0.125
2 (12 coefficients) 0.312 0.437 0.578 1.233 1.966
3 (20 coefficients) 2.356 2.886 3.962 13.073 79.779
4 (30 coefficients) 11.216 13.182 21.326 151.789 2092.49
5 (42 coefficients) 42.183 49.624 114.068 1768.13 39329.1
6 (56 coefficients) 79.482 108.436 505.257 18560.1 145079*
7 (72 coefficients) 115.051 217.466 2316.47 64225.7* 352630*
8 (90 coefficients) 266.886 906.257 6669.28* 152463* 695272*
9 (110 coefficients) 707.667 2704.35* 14685.3* 296970* 1.20629×106*
10 (132 coefficients) 1610.07* 6141.29* 27486* 511444* 1.9189×106*

Table 1: Relegation Algorithm:Seconds per coefficients/homologic equations
considered

The data in the table are summarized in Figure (4), each line has been
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8 Conclusions

A general perturbative theory is developed that considers all the terms of the
gravitational potential. This generalises previous methods developed into the
literature and enables an algorithmic procedure to identify frozen orbits. The
relegation method presents a completely autonomous method that can be im-
plemented in algebraic software such as Mathematica and Piranha.

A mathematical representation of an inhomogeneous gravitational field has
been developed in polar-nodal coordinates. This expression is shown to be dif-
ferent from those stated in the literature [21], [20]. This is an important result
as much of the current work in this field is using the incorrect equations in their
analysis. The equations that were derived in this paper were verified by using
two completely different approaches.

An automated derivation of an analytical perturbative theory has been de-
veloped. This method was implemented in modern computer algebra tools both
in Mathematica and Piranha. Both Mathematic and Pirahna dealt with the
extensive computations involved in the high dimensional series expansions.

The relegation algorithm has been completely automated in algebraic soft-
ware.
The project has developed two different software scripts, written in Mathemat-
ica and Piranha, which can deal with any arbitrary order nmax of terms of
the potential as well as any arbitrary degree smax of homological equations
returning as output the transformed Hamiltonian

K(r, θ, R,Θ, N) =

smax
∑

s=0

ǫs

s!
Ks

and the transformation

W (r, θ, ν, R,Θ, N) =

smax
∑

s=0

ǫs

s!
Ws.

The second homological equation is considered representing a generalisation
of the usual procedure found in the literature (see for example [21] and [23])
which consider only the first Homological equation. Previous work only consid-
ers the first equation due to the high number of terms which must be considered.
With the availability of powerful algebraic software it has been shown that the
second homological equation providing more accurate approximations can be
exploited.

Both Mathematica and Piranha easily deal with the extensive algebraic ma-
nipulations required in the perturbative method. The order of relegation ob-
tainable using this software is way beyond the data available for the coefficients
of the celestial bodies gravitational field.

The analytical perturbative theory is based on combining Deprit’s method
[13] to relegate the argument of node and the classical Delaunay Normalization
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[12]. The derived method is used to reduce the number of degrees of freedom
to a (integrable) single degree of freedom model.

The analytical perturbative theory that is presented here and implemented
in Piranha and Mathematica is able to derive high order approximations of the
Hamiltonian. As this method generalises previous methods and can be used to
obtain higher orders than previously obtained we are able to find more accurate
analytical descriptions of frozen orbits.

The general method is illustrated through an application to the asteroid 433-
Eros of the main asteroid belt. This asteroid represents the “classical” example
on which most of the literature referenced in this paper is focused. This enables
a comparison to previous method for finding frozen orbits to be made. The
work here is to higher order and therefore a more accurate description of the
spacecraft’s motion about this asteroid is derived. Furthermore, we are able to
identify new classes of frozen orbits. The generality of the method would allow
it to be applied to any celestial body where the relevant coefficients are available.

This method enables a rapid preliminary mission analysis of frozen orbits,
whereby the user can simply state the required eccentricty and inclination and
a frozen orbit will be generated.

The results obtained have been compared with the ones found for other four
asteroids:
- 1989 UQ
- 1999 Ju3 2
- Phobos
- Deimos,
considering the coefficients up to order 10 (i.e. 132 coefficients).
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9 Appendix A: Mathematical Preview

9.1 Changes of coordinates

As we want to transform the perturbing potential from the polar spherical coor-
dinates (longitude, latitude and ray) to the so called nodal polar variables (see
[26]), in this section we will explicit the relations between three sets of coordi-
nates:
- the polar spherical coordinates - the cartesian - the polar-nodal (or Wittaker
variables)

9.1.1 from polar spherical to cartesian and back

Given a cartesian system of reference Ox̂,ŷ,ẑ and a point P whose position and
velocity vectors in cartesian coordinates are r = [x, y, z], X = [X,Y, Z], we want
to express in terms of the cartesian coordinates its distance from the origin r,
longitude λ and latitude δ; recall that λ ∈ [0, 2π) is the angle expressing the
horizontal displacement of the spacecraft from a reference semiplane that we fix
to be the x̂/ẑ semiplane of the x > 0, and δ ∈ [−π

2 ,
π
2 ] is the vertical angular

displacement from the x̂/ŷ plane. By such definition it is easy to see that :

r =
√

x2 + y2 + z2

cos δ =

√
x2+y2√

x2+y2+z2

sin δ = z√
x2+y2+z2

cosλ = x√
x2+y2

sinλ = y√
x2+y2

(87)

And inverting these relations, calling r = |r| =
√

x2 + y2 + z2:

√

x2 + y2 = r cos δ
z = r sin δ
x = r cos δ cosλ
y = r sinλ cos δ

(88)

9.1.2 from polar nodal to cartesian and back

The three coordinates (r, θ, ν) of the nodal polar variables are respectively the
satellite distance from the origin, the argument of latitude (i.e the angular dis-
tance of the spacecraft from the line of the ascending node on the orbital plane
) and right ascension of the ascending node, that is the longitude of the as-
cending node; their conjugate momenta (R,Θ, N) are radial velocity, angular
momentum, polar component of angular momentum. The angular momentum
Θĥ, (where ĥ is the unity vector indicating the direction and Θ the magnitude)
is defined as:

Θĥ = r×X =

∥

∥

∥

∥

∥

∥

x̂ ŷ ẑ
x y z
X Y Z

∥

∥

∥

∥

∥

∥

= [yZ − zY, zX − xZ, xY − yX] (89)
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where × denotes the vectorial product and ‖.‖ the determinant.
Calling n the vector identifying the position of the ascending node we find that

n = [0, 0, 1]×Θĥ =

∥

∥

∥

∥

∥

∥

x̂ ŷ ẑ
0 0 1
Θx Θy Θz

∥

∥

∥

∥

∥

∥

= [−Θy,Θx, 0] = [xZ − zX, yZ − zY, 0]

(90)
as the line of the ascending node is defined at the interception of the orbital
plane and the horizontal plane x̂/ŷ and therefore it has to be perpendicular to
both the angular momentum and the ẑ axe. The longitude of the ascending
node ν is therefore found by:

cos ν = nx

|n| =
xZ−zX√

(xZ−zX)2+(yZ−zY )2

sin ν =
ny

|n| =
yZ−zY√

(xZ−zX)2+(yZ−zY )2

(91)

In order to find the argument of latitude θ the definition of the inclination of
the orbit I is firstly needed, which is the latitude of a unity vector î contained
in the orbital plane and perpendicular to the nodal line, namely:

î = ĥ×n

|ĥ×n| =
1
|i|
[

(Y x−Xy)(−Zy + Y z), (Y x−Xy)(Zx−Xz), Z2(x2 + y2)

−2Z(Xx+ Y y)z + (X2 + Y 2)z2
]

(92)
where

|i| =
(

((Y x−Xy)(−Zy + Y z))2 + ((Y x−Xy)(Zx−Xz))2 +
(

Z2(x2 + y2)

−2Z(Xx+ Y y)z + (X2 + Y 2)z2
)2
)

1
2

(93)
Therefore

sin I = îz = Z2(x2+y2)−2Z(Xx+Y y)z+(X2+Y 2)z2

|i|
cos I = Θz

|Θ| =
Y x−Xy√

(Y x−Xy)2+(Zx−Xz)2+(Zy−Y z)2

(94)

Finally the argument of latitude θ is the angle between the normalized vector
r

|r| expressing the position of the spacecraft and normalized vector identifying

the position of the of the ascending node, n
|n| , therefore:

cos θ = r
|r| .ĥ = Z(x2+y2)−(Xx+Y y)z√

x2+y2+z2
√

(Zx−Xz)2+(Zy−Y z)2

sin θ = r
|r| .̂i =

z√
x2+y2+z2

√

(Z2(x2+y2)−2XZxz−2Y y(Xx+Zz)+Y 2(x2+z2)+X2(y2+z2))
(Z2(x2+y2)−2Z(Xx+Y y)z+(X2+Y 2)z2)

(95)
Finally N = |Θ| cos I and given the momenta vector X = [X,Y, Z] R will be
defined as R = X. r

|r| . The inverse of this transformation is given in [19] and is

easily verifiable:

x = |r|(cos θ cos ν − sin θ cos I sin ν)
y = |r|(cos θ sin ν + sin θ cos I cos ν)
z = |r| sin θ sin I
X = (R cos θ − Θ

|r| sin θ) cos ν − (R sin θ + Θ
|r| cos θ) cos I sin ν

Y = (R cos θ − Θ
|r| sin θ) sin ν + (R sin θ + Θ

|r| cos θ) cos I cos ν

Z = (R sin θ + Θ
|r| cos θ) sin I

(96)
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9.1.3 from polar spherical to nodal polar

Composing the transformations above it is easy to demonstrate that:

sin δ = sin θ sin I

cos δ =
√
cos θ2 + cos I2 sin θ2

sinλ = cos θ cos ν−sin θ cos I sin ν√
cos θ2+cos I2 sin θ2

cosλ = cos θ sin ν+sin θ cos I cos ν√
cos θ2+cos I2 sin θ2

(97)

which, calling

D =
√

cos θ2 + cos I2 sin θ2 (98)

can be rearranged as:

sin δ = sin θ sin I
cos δ = D
sinλ = cos θ cos ν−sin θ cos I sin ν

D

cosλ = cos θ sin ν+sin θ cos I cos ν
D

(99)

9.2 Legendre Polynomial and some properties

Definition 5 (Legendre Polynomial)
∀n ∈ N the Legendre Polynomial Pn(x) is:

Pn(x) :=
1

2nn!

dn

dxn
(x2 − 1)n (100)

Formula 1 (Explicit formulation of Legendre Polynomials)
∀n ∈ N it is true that:

Pn(x) =
1

2n

n
∑

j=0

(

n

j

)2

(−1)j(1 + x)n−j(1− x)j (101)

Proof:
Pn(x) =

1
2nn!

dn

dxn (x
2 − 1)n

= 1
2nn!

dn

dxn ((x+ 1)n(x− 1)n)

= 1
2nn!

n
∑

j=0

(

n

j

)(

dj

dxj
(x+ 1)n

)(

dn−j

dxn−j
(x− 1)n

)

= 1
2nn!

n
∑

j=0

(

n

j

)(

n!

(n− j)!
(x+ 1)n−j

)(

n!

j!
(x− 1)j

)

= 1
2n

n
∑

j=0

(

n

j

)2

(−1)j(1 + x)n−j(1− x)j

(102)

Definition 6 (Associated Legendre Polynomials) ∀n,m ∈ N; n < k the Asso-
ciated Legendre Polynomials are defined as:

Pm
n (x) := (−1)m(1− x2)

m
2
dm

dxm
(Pn(x)) (103)
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Formula 2 (Explicit formulation of Associated Legendre Polynomials)
∀n,m ∈ N; m < n it is true that:

Pm
n (x) = (−1)m(1− x2)

m
2

n!2m!2

2n

n
∑

j=0

min{j,m}
∑

ℓ=max{0,j+m−n}

(

(−1)j+ℓ+p·

· 1
(j)!(n−j)!ℓ!(m−ℓ)!(n−m−j+ℓ)!(j−ℓ)! (1 + x)n−m−j+ℓ(1− x)j−ℓ

)

(104)

Proof:
Using Formula 1 yields:

Pm
n (x) = (−1)m(1− x2)

m
2

dm

dxm (Pn(x))

= (−1)m(1− x2)
m
2

1
2n

n
∑

j=0

(

n

j

)2

(−1)j
dm

dxm
(1 + x)n−j(1− x)j

= (−1)m(1− x2)
m
2

1
2n

n
∑

j=0

(

n

j

)2

(−1)j
m
∑

ℓ=0

(

m

ℓ

)(

dm−ℓ

dxm−ℓ
(1 + x)n−j

)

(

dℓ

dxℓ (1− x)j
)

= (−1)m(1− x2)
m
2

1
2n

n
∑

j=0

(

n

j

)2

(−1)j
min{j,m}
∑

ℓ=max{0,j+m−n}

(

(n− j)!

(n− j −m+ ℓ)!

(1 + x)n−j−m+ℓ
)

(

j!
(j−ℓ)! (−1)ℓ(1− x)j−ℓ

)

= (−1)m(1− x2)
m
2

n!2m!2

2n

n
∑

j=0

min{j,m}
∑

ℓ=max{0,j+m−n}

(

(−1)j+ℓ+p·

· 1
(j)!(n−j)!ℓ!(m−ℓ)!(n−m−j+ℓ)!(j−ℓ)! (1 + x)n−m−j+ℓ(1− x)j−ℓ

)

(105)

9.3 Useful trigonometric formulas

Formula 3 ∀m ∈ N it is true that:

cos (mx) =

⌊

m
2

⌋

∑

p=0

(

m

2p

)

(−1)p cos (x)
m−2p

sin (x)
2p

sin (mx) =

⌊

m−1
2

⌋

∑

p=0

(

m

2p+ 1

)

(−1)p cos (x)
m−2p−1

sin (x)
2p+1

(106)

Proof: Using Euler’s Formula yields:

(cos (mx) + ı sin (mx)) =
m
∑

s=0

(

m

s

)

ıs cos (x)
m−s

sin (x)
s

(107)
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as
(cos (mx) + ı sin (mx)) = eımx

= (eıx)m

= (cos (x) + ı sin (x))m

=
m
∑

s=0

(

m

s

)

ıs cos (x)
m−s

sin (x)
s

(108)

Therefore, equalling the Real part of both sides of (107):

cos (mx) = ℜ
(

m
∑

s=0

(

m

s

)

ıs cos (x)
m−s

sin (x)
s

)

=
m
∑

s=0, s even

(

m

s

)

ın cos (x)
m−s

sin (x)
s

=

⌊

m
2

⌋

∑

p=0

(

m

2p

)

ı2p cos (x)
m−2p

sin (x)
2p

=

⌊

m
2

⌋

∑

p=0

(

m

2p

)

(−1)p cos (x)
m−2p

sin (x)
2p

(109)

Analogously, equalling the Imaginary part of both sides of (107):

sin (mx) = ℑ
(

m
∑

s=0

(

m

s

)

ıs cos (x)
m−s

sin (x)
s

)

=

m
∑

s=0, s odd

(

m

s

)

ıs cos (x)
m−s

sin (x)
s

=

⌊

m−1
2

⌋

∑

p=0

(

m

2p+ 1

)

ı2p+1 cos (x)
m−2p−1

sin (x)
2p+1

=

⌊

m−1
2

⌋

∑

p=0

(

m

2p+ 1

)

(−1)p cos (x)
m−2p−1

sin (x)
2p+1

(110)
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