Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Multivariate statistical methods for the environmental forensic classification of coal tars from former manufactured gas plants

McGregor, Laura A. and Gauchotte-Lindsay, Caroline and Daeid, Niamh Nic and Thomas, Russell and Kalin, Robert M. (2012) Multivariate statistical methods for the environmental forensic classification of coal tars from former manufactured gas plants. Environmental Science and Technology, 46 (7). pp. 3744-3752.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Compositional disparity within a set of 23 coal tar samples (obtained from 15 different former manufactured gas plants) was compared and related to differences between historical on-site manufacturing processes. Samples were prepared using accelerated solvent extraction prior to analysis by two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. A suite of statistical techniques, including univariate analysis, hierarchical cluster analysis, two-dimensional cluster analysis, and principal component analysis (PCA), were investigated to determine the optimal method for source identification of coal tars. The results revealed that multivariate statistical analysis (namely, PCA of normalized, preprocessed data) has the greatest potential for environmental forensic source identification of coal tars, including the ability to predict the processes used to create unknown samples.