Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Carbon isotopic fractionation of CFCs during abiotic and biotic degradation

Archbold, Marie E and Elliot, Trevor and Kalin, Robert M (2012) Carbon isotopic fractionation of CFCs during abiotic and biotic degradation. Environmental Science and Technology, 46 (3). pp. 1764-1773.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation.

Item type: Article
ID code: 40049
Keywords: abiotic degradation , biotic degradation, kinetics, carbon isotope, air samples, Engineering (General). Civil engineering (General), Environmental Chemistry, Chemistry(all)
Subjects: Technology > Engineering (General). Civil engineering (General)
Department: Faculty of Engineering > Civil and Environmental Engineering
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 14 Jun 2012 11:52
Last modified: 27 Mar 2014 10:11
URI: http://strathprints.strath.ac.uk/id/eprint/40049

Actions (login required)

View Item