Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly

Hughes, Meghan and Frederix, Pim W. J. M. and Raeburn, Jaclyn and Birchall, Louise S. and Sadownik, Jan and Coomer, Fiona C. and Lin, I-Hsin and Cussen, Edmund J. and Hunt, Neil T. and Tuttle, Tell and Webb, Simon J. and Adams, Dave J. and Ulijn, Rein V. (2012) Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter, 8 (20). pp. 5595-5602. ISSN 1744-683X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Self-assembled supramolecular structures of peptide derivatives often reflect a kinetically trapped state rather than the thermodynamically most favoured structure, which presents a challenge when trying to elucidate the molecular design rules for these systems. In this article we use thermodynamically controlled self-assembly, driven by enzymatic condensation of amino acid derivatives, to elucidate chemical composition/nanostructure relationships for four closely related Fmoc-dipeptide-methyl esters which form hydrogels; SF, SL, TF and TL. We demonstrate that each of the four systems self-assemble to form extended arrays of beta-sheets which interlock via pi-stacking of Fmoc-moieties, yet with subtle differences in molecular organisation as supported by rheology, fluorescence emission spectroscopy, infrared spectroscopy, X-ray diffraction analysis and molecular mechanics minimisation.