Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

The motor cortex drives the muscles during walking in human subjects

Petersen, Tue and Willerslev-Olsen, M and Conway, Bernard A and Nielsen, J.B. (2012) The motor cortex drives the muscles during walking in human subjects. Journal of Physiology, 590 (10). pp. 2443-2452. ISSN 0022-3751

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

It is often assumed that automatic movements such as walking require little conscious attention and it has therefore been argued that these movements require little cortical control. In humans, however, the gait function is often heavily impaired or completely lost following cortical lesions such as stroke. In this study we investigated synchrony between cortical signals recorded with electroencephalography (EEG) and electromyographic signals (EMG activity) recorded from the tibialis anterior muscle (TA) during walking. We found evidence of synchrony in the frequency domain (coherence) between the primary motor cortex and the TA muscle indicating a cortical involvement in human gait function. This finding underpins the importance of restoration of the activity and connectivity between the motor cortex and the spinal cord in the recovery of gait function in patients with damage of the central nervous system.

Item type: Article
ID code: 40031
Keywords: walking, treadmill walking, walking muscles, corticospinal tract, Bioengineering, Physiology
Subjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering
Department: Faculty of Engineering > Biomedical Engineering
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 13 Jun 2012 16:57
    Last modified: 04 Apr 2014 05:17
    URI: http://strathprints.strath.ac.uk/id/eprint/40031

    Actions (login required)

    View Item