Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The motor cortex drives the muscles during walking in human subjects

Petersen, Tue and Willerslev-Olsen, M and Conway, Bernard A and Nielsen, J.B. (2012) The motor cortex drives the muscles during walking in human subjects. Journal of Physiology, 590 (10). pp. 2443-2452. ISSN 0022-3751

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

It is often assumed that automatic movements such as walking require little conscious attention and it has therefore been argued that these movements require little cortical control.  In humans, however, the gait function is often heavily impaired or completely lost following cortical lesions such as stroke.  In this study we investigated synchrony between cortical signals recorded with electroencephalography (EEG) and electromyographic signals (EMG activity) recorded from the tibialis anterior muscle (TA) during walking.  We found evidence of synchrony in the frequency domain (coherence) between the primary motor cortex and the TA muscle indicating a cortical involvement in human gait function.  This finding underpins the importance of restoration of the activity and connectivity between the motor cortex and the spinal cord in the recovery of gait function in patients with damage of the central nervous system.