Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The motor cortex drives the muscles during walking in human subjects

Petersen, Tue and Willerslev-Olsen, M and Conway, Bernard A and Nielsen, J.B. (2012) The motor cortex drives the muscles during walking in human subjects. Journal of Physiology, 590 (10). pp. 2443-2452. ISSN 0022-3751

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

It is often assumed that automatic movements such as walking require little conscious attention and it has therefore been argued that these movements require little cortical control.  In humans, however, the gait function is often heavily impaired or completely lost following cortical lesions such as stroke.  In this study we investigated synchrony between cortical signals recorded with electroencephalography (EEG) and electromyographic signals (EMG activity) recorded from the tibialis anterior muscle (TA) during walking.  We found evidence of synchrony in the frequency domain (coherence) between the primary motor cortex and the TA muscle indicating a cortical involvement in human gait function.  This finding underpins the importance of restoration of the activity and connectivity between the motor cortex and the spinal cord in the recovery of gait function in patients with damage of the central nervous system.