Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Computational biomolecular design: predicting the solvation behaviour of De Novo designed molecules

Palmer, David (2012) Computational biomolecular design: predicting the solvation behaviour of De Novo designed molecules. In: University of Strathclyde Research Day 2012, 2012-06-07 - 2012-06-07.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Understanding the solvation behaviour of bioactive molecules is a fundamental step in biomolecular design: from predicting the bioavailability of novel pharmaceuticals, to assessing the environment fate of potential pollutants. The Integral equation theory (IET) of molecular liquids is a powerful method for the description of structural and thermodynamical parameters of molecules in solutions. Although IET has been an active topic of academic research for many years, in its common form the theory does not permit accurate calculations of solvation thermodynamics across multiple classes of molecules, which has prevented it from being widely used in many practical applications such as computational drug design. We have developed a free energy functional (3D RISM/UC), which allows hydration free energies to be calculated accurately for molecules ranging from simple alkanes to pharmaceuticals. It is shown that this method can be used to calculate the intrinsic aqueous solubility of crystalline druglike molecules. Our approach is easily implemented using existing computational software, which makes it immediately suitable for use in a wide range of industrial and academic applications.