Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Rigid body trajectories in different 6D spaces

Linton, Carol and Holderbaum, William and Biggs, James (2012) Rigid body trajectories in different 6D spaces. ISRN Mathematical Physics, 2012. ISSN 2090-4673

[img] PDF
Biggs_JD_Pure_Rigid_body_trajectories_in_different_6D_spaces_Jun_2012.pdf - Preprint

Download (406kB)

Abstract

The objective of this paper is to show that the group SE(3) with an imposed Lie-Poisson structure can be used to determine the trajectory in a spatial frame of a rigid body in Euclidean space. Identical results for the trajectory are obtained in spherical and hyperbolic space by scaling the linear displacements appropriately, since the influence of the moments of inertia on the trajectories tend to zero as the scaling factor increases. The semi-direct product of the linear and rotational motions gives the trajectory from a body frame perspective. It is shown that this cannot be used to determine the trajectory in the spatial frame. The body frame trajectory is thus independent of the velocity coupling. In addition, it is shown that the analysis can be greatly simplified by aligning the axes of the spatial frame with the axis of symmetry which is unchanging for a natural system with no forces and rotation about an axis of symmetry.