Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Influence of microstructure and stress on short intergranular stress corrosion crack growth in austenitic stainless steel type 304

Rahimi, Salaheddin and Marrow, James (2008) Influence of microstructure and stress on short intergranular stress corrosion crack growth in austenitic stainless steel type 304. In: 17th European Conference on Fracture, 2008-09-02 - 2008-09-05.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Intergranular stress corrosion cracking (IGSCC) causes failures in austenitic stainless steels when the appropriate electrochemical, metallurgical and mechanical conditions exist. In this study, the effects of time, applied stress, residual stress and microstructure on population of short crack nuclei has been investigated in sensitised type 304 austenitic stainless steel, tested under static load in an acidified potassium tetrathionate (K2S4O6) environment. Statistical analysis, using the Gumbel distribution method, enables analysis of the growth rate of short crack nuclei. This methodology is being developed, in order to quantitatively evaluate the influence of grain boundary engineering and surface finishing on crack nucleation.