
 
 
Counsell, J.M. and Zaher, O.S. and Brindley, Joseph (2010) Auto-tuning for high performance 
autopilot design. In: AIAA Guidance, Navigation and Control Conference, 2-5 August 2010, 
Toronto, Canada.
 
 
 
 
http://strathprints.strath.ac.uk/16445/
 
 
 
 
 
 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://strathprints.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://strathprints.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://strathprints.strath.ac.uk/16445/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


1
 Professor (BRE Centre), Mechanical Engineering 

2 PhD Student, Mechanical Engineering 
3
 PhD Student, Mechanical Engineering         1 

Auto-Tuning for High Performance 

Autopilot Design 

J. M. Counsell
1
, O. S. Zaher

2
, J. Brindley

3
 

University of Strathclyde, Scotland, UK 

 

ABSTRACT 

A novel auto-tuning method for the RIDE controller 

algorithm is presented. The RIDE controller is applied 

to a high performance aircraft model. The tuner utilises 

a constrained genetic algorithm to automate the tuning 

process. The results of the tuner are compared with that 

of another tuning method which utilises unconstrained 

optimisation so as to highlight the efficacy of 

constrained optimisation for this application. It is 

shown from the results that the constrained genetic 

algorithm optimisation scheme offers a highly effective 

tuning solution which can be used to attain safe and 

high performance control with the RIDE control 

algorithm.  

 

NOMENCLATURE 

A State matrix 

B Control matrix 

C Output matrix 

GA(s) Actuator transfer function 

KI Integral gain 

Kp Proportional gain 

Ωn Diagonal matrix of natural frequencies 

𝒖    Input vector 

𝒚    Output vector 

yA Actual model response 

yI Ideal model response 

Zd Diagonal matrix of damping ratios 

 

 

1. INTRODUCTION 

In all control systems, it is vitally important to 

tune the controller parameters in order to obtain the 

optimum controller performance. Incorrect selection of 

controller parameters will not only result in poor 

controller performance, it can also be the source of 

system instability. Thus, careful selection of these 

parameters must be made in order to avoid this 

problem. The process of tuning can be done in an 

iterative fashion i.e. changing the values until the 

desired response is achieved, however, this process can 

be extremely time consuming. Consequently, there are 

some proven tuning methods which have been 

developed in order to aid in this process. 

One such method which is commonly used in 

the design of PID controllers is the Zeigler-Nichols 

Ultimate Cycle method [1]. This method has proven to 

be reliable, and so is widely used for determining 

controller gains. However, it is not applicable to all 

controllers, particularly nonlinear MIMO controllers. 

For the controllers to which it is applicable the tuning 

process can often still be rather tedious, particularly 

when lengthy simulations are involved. A further 

drawback of the Zeigler Nichols tuning method is that, 

although it generally produces tenable results, the 

results are not always optimal. This is due to the fact 

that it was originally designed to produce a “quarter 

wave decay” response, that is, each peak in the 

oscillatory response is a quarter magnitude of its 

predecessor. In view of these problems, the benefit of 

automating the tuning process is apparent.  

This paper aims to elucidate the development 

of a novel method which can be used to tune controller 

parameters automatically. One of the main benefits of 

this tuning method, besides eliminating the need for 

lengthy iterative tuning processes, is that it can be 

applied to any controller setup, be it SISO or MIMO, to 

tune any parameter. The performance of the algorithm, 

which utilises constrained optimisation with the genetic 

algorithm, is compared to that of an unconstrained 

optimisation algorithm accentuating the advantages of 

constrained optimisation for this application. The 

performance of both auto-tuners is demonstrated and 

analysed through application to a high performance 

autopilot system using the RIDE control algorithm [2] 

to control an F-18/HARV fighter aircraft model.   
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2. AIRCRAFT MODEL 

The F-18/HARV - a modified version of the 

F/A-18 fighter aircraft - is the aircraft model used in the 

testing of the auto-tuning algorithm. The computational 

model used in this paper was developed in [3] which 

presents the model description in greater detail than 

shown here. A linearised model of the aircraft operating 

at a speed and altitude of Mach 0.4 and 6000ft 

respectively was used. The model is controlled using 

only thrust vectoring commands since the dynamic 

pressure at the operating point is relatively low (approx. 

180 psf). The linear model used is expressed in state-

space as shown in equation 7. 

𝑥 (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)   

𝑦(𝑡) = 𝐶𝑥(𝑡)    …(1) 

Where the state vector x(t) = [α q β p r]
T
 and the input 

vector u(t) = [δPTV  δRTV δYTV]
T
. Only p, q and r, the 

state variables describing the roll, pitch and yaw rates 

respectively, are controlled in this model. The actuator 

inputs δPTV, δRTV and δYTV are the pitch, roll and yaw 

thrust vectoring positions respectively. The numerical 

state space model is given in Appendix A. A diagram of 

the general F-18 aircraft is shown in Fig.1.  

 

Fig.1: F-18 fighter aircraft 

2.1 Actuator Dynamics 

When modelling any controlled system, in order to 

capture reality as accurately as possible, it is essential to 

include models of the systems actuators and their 

associated nonlinear characteristics. All actuators have 

specific physical characteristics which define their 

performance and capability thus, in order to obtain a 

realistic model response, it is necessary that these 

characteristics are preserved in the model. Detailed 

models of the actuators present in the F-18 model can 

be reduced and represented simply as spring-mass 

damper systems with second order transfer functions 

[4]. The transfer function used to represent the thrust 

vectoring nozzles is shown below in equation 2. 

1

 
𝑠

20
 
2
+
2(0.6)

20
𝑠+1

   ...(2) 

The actuator discontinuity that is included in this model 

is the deflection limits. For the thrust vectoring nozzles 

this is ±30 deg. 

 

 

3. RIDE CONTROLLER 

As previously mentioned, the RIDE control 

algorithm was used to control the aircraft model and 

thus it is the controller on which the auto-tuner was 

tested. This section provides a brief overview of the 

RIDE controller set up used so as to clarify which 

parameters require tuning. A more detailed explanation 

of the RIDE algorithm can be found in [2]. The RIDE 

control algorithm is given by the equation below: 

𝑢  (𝑡) = 𝑟 − 𝐾𝑃𝑦 (𝑡) + 𝑢   𝑒𝑞 (𝑡)    …(3) 

Where 

𝑟 = 𝐾𝐼𝑒(𝑡) …(4) 

The equivalent control term (ueq) in (3) uses inverse 

dynamics to determine the actuator inputs that are 

required to ensure zero rate of change of the outputs and 

thus works effectively to diminish any disturbances and 

reduce coupling. The equivalent control term is 

determined by the following equation: 

𝑢   𝑒𝑞 (𝑡) = − 𝐶𝐵 −1𝑦  (𝑡) + 𝑢  (𝑡)  …(5) 

The RIDE controller is shown in diagrammatic 

form in Fig.2[5]. 

 

Fig.2: RIDE controller setup 
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The transfer function of the above system is given by 

𝐺(𝑠) =
𝐾𝐼𝐾𝑆𝐺𝐴(𝑠)

𝑠2+ 𝐾𝑝𝐾𝑠𝐺𝐴 𝑠  𝑠+𝐾𝐼𝐾𝑆𝐺𝐴(𝑠)
 …(6) 

GA(s) can be shown to be approximately equal to 1 if 

the bandwidth of the inner loop is slow in comparison 

to the outer loop bandwidth. If (6) is compared to a 

second order transfer function, KP and KI can be 

selected such that 

Kp = [Ks]
-1

2ZdΩn  …(7) 

KI = [Ks]
-1

Ωn
2
   …(8) 

Where Ks = [CB]. This way, the controller gains can be 

tuned by altering the natural frequency and damping 

ratios of the controller. When tuning the controller, it is 

important to note that only small excitations should be 

used when observing the system response so that the 

actuator discontinuities are not encountered. The RIDE 

algorithm is used with the Optimal and Safe Control 

Algorithm (OSCA) which deals with actuator 

nonlinearities [6]. This way the gains which are 

obtained with small excitations to the system remain 

suitable for larger excitations which cause 

discontinuities to be encountered. 

 

4. AUTO-TUNING  

Both auto-tuning algorithms mentioned 

previously were implemented using MATLAB however 

the algorithmic concepts can be extended to any coding 

platform. The algorithms work by comparing the actual 

model response to that of an ideal reference model 

which is represented by an arbitrary second order 

transfer function. The reference model is connected in 

parallel to the actual control system as shown in Fig.3. 

 

Fig.3: Actual to ideal system comparison 

Based on the requested output (r), the error signal (e) is 

calculated from the difference between both output 

signals (yA – yI) in order to determine the deviation of 

the actual output from the ideal output. The requested 

output can be altered by the user giving the user the 

freedom to tune the controller for a specific desired 

output e.g. a step or pulse excitation. The second order 

transfer function representing the ideal system can also 

be designed with specific attributes which suit the 

user’s needs e.g. response time can be altered by 

varying the natural frequency and damping of the 

transfer function. In the case of tuning a MIMO control 

system, the calculation of the error signal requires that 

all of the system outputs are measured to allow for a 

cumulative error signal to be determined. It is clear that 

less deviation of the actual output signal from the ideal 

output signal i.e. smaller error signal means better 

controller performance. Therefore the controller can be 

said to have achieved its optimum performance when 

the error signal is at its minimum. Hence, in order to 

achieve the optimum tuning for the controller, the 

controller parameters that minimise the error signal 

must be determined.  

4.1 Optimisation 

In order to achieve the aforementioned, the entire 

control system is treated as a nonlinear function whose 

inputs are the parameters to be tuned and the output is 

the error signal. The optimisation of this function can be 

performed in two different manners, namely constrained 

and unconstrained nonlinear optimisation. Both of these 

types of optimisation were applied and tested in this 

paper so as to highlight the advantages and 

disadvantages of each method, and more importantly, to 

demonstrate the superiority of constrained optimisation 

for this application.    

4.1.1 Unconstrained Optimisation 

For the unconstrained auto-tuner, the Nelder-Mead 

simplex minimisation algorithm implemented in 

MATLAB (fminsearch function) was used. This 

algorithm requires user defined initial estimates of the 

parameters to be tuned as a starting point. It then 

minimises the objective function, that is, the control 

system with the error signal as the output by altering the 

tuning parameters – starting from the user defined 

initial estimates - until the parameters which correspond 

to a local minimum are found. It is important to bear in 

mind that the algorithm is only capable of finding local 

minima as opposed to the global minimum. The 

likelihood of the local minimum found corresponding to 

the global minimum is unknown and is highly 

dependant on the user defined initial estimates. Hence 
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choosing suitable initial estimates proves problematic in 

that suboptimal results can be produced based on the 

initial specification of the parameters [7]. Another 

drawback of unconstrained optimisation for this 

application is that system stability is not guaranteed 

with the results produced, as is demonstrated in the 

results section. The auto-tuner does however allow up 

to a maximum of five parameters to be tuned 

simultaneously which is particularly advantageous 

when the user desires to tune many parameters e.g. 

controller specific parameters other than the 

conventional proportional, integral and derivative gains.  

4.1.2 Constrained Optimisation 

It is clear from the problems associated with 

unconstrained optimisation mentioned a priori that an 

optimisation algorithm that is able to determine global 

minima is desirable. The Genetic Algorithm (GA), well 

known for its global optimisation capability [8], 

therefore was used for the constrained Auto-tuning 

algorithm. It is an evolutionary algorithm which uses 

techniques inspired by evolutionary biology (natural 

selection). The genetic algorithm, unlike classical 

optimisation algorithms, generates a population of 

points at each iteration which converge towards an 

optimal solution as opposed to a sequence of single 

points approaching an optimal solution. Due to the 

design of recombination that exists within the GA, the 

population generated moves away from local minima 

which traditional algorithms are likely to get caught in 

[9]. Fig.4 illustrates the concept of local and global 

minima with a nonlinear function which has more than 

one minimum. 

 

Fig.4: Local & global minimum 

In order to understand how the GA can be configured 

for the auto-tuning algorithm, it is imperative that the 

reader is familiarised with the concepts behind the GA.  

Initially the algorithm creates a random initial 

population based on the initial range which can be 

specified by the user. It is important that the initial 

range be selected carefully as the population diversity 

has a large bearing on how well the GA performs. The 

optimal initial range is usually found by trial and error. 

It is known however that if the initial range is specified 

close to the optimal solution or if the optimal solution 

lies within the initial range, the GA’s performance will 

be greatly improved and the global minimum is more 

likely to be found. Once the initial range has been 

specified, a random initial population is created within 

this range. The next population is then created based on 

the members in the current population. It consists of 

members who are taken directly from the current 

population, members which have been modified using 

mutations and others can be from crossovers - 

combined vector entries from a pair of members. The 

members which are taken directly from the current 

population are selected based on their fitness – the 

members which correspond to the lowest outputs from 

the nonlinear function being optimised have higher 

fitness. The number of members which are taken 

directly from the current population, known as the elite 

count, can be specified by the user. The number of new 

members which are created using crossovers can also be 

defined by the user through the crossover fraction. 

Based on the elite count and the crossover fraction, the 

number of new members created from mutations is 

determined. To illustrate this, consider a population size 

of 15 with the elite count and crossover fraction set as 2 

and 0.7 respectively. This would mean that 13 members 

other than elite members remain from the population. 

The number of crossover members is then determined 

by 0.7 x 13 = 9.1 which would be rounded to 9. This 

would leave four members to be created from 

mutations. In order to control the amount of mutation 

applied to members, the scale and shrink options can be 

defined. The scale option allows the standard deviation 

of the mutation at the initial population to be controlled.  

The shrink option controls the amount by which the 

mutation decreases with each generation [10]. The 

algorithm continues to generate new populations until 

one of the stopping criteria is met.  
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4.1.2.1 Establishing Constraints 

In order to ensure system stability and increase the 

likelihood of a global minimum being found, it is 

necessary to establish upper and lower bounds within 

which the system is stable and the optimum gain is 

known to lie. In many cases however, the user may not 

know where the optimum gain lies, in which case the 

gains that correspond to the boundaries of the stable 

region for the system can be used as reasonable 

constraints so as to ensure that the auto-tuner maintains 

the system within stable limits. As was stated in 

previous section, the parameters which are being tuned 

are the system natural frequency and damping ratio. 

Therefore it is necessary to establish suitable constraints 

for both of these parameters. Since the closed loop 

system with the RIDE controller can be considered to 

be second order, a simple classical root locus analysis 

of a second order system can be related to the actual 

system in order to determine the constraints for the 

damping ratio. A root locus plot for a second order 

system can be seen in Fig.5 where the damping ratio is 

varied from 0.8 to 0.1.  

 

Fig.5: Root Locus with varying damping ratio 

A minimum damping ratio of 0.5 was chosen as the 

lower constraint so as to leave a reasonable margin for 

stability and to ensure that the level of overshoot does 

not become too high (Fig.6). The upper constraint was 

chosen to be 1 so that the response is not over damped 

or unnecessarily slow. 

 

Fig.6: Second order response with ζ=0.5 

When finding constraints for the natural frequency, the 

lower constraint could be selected as any value above 

zero which is known to be stable. A value of 3 rad/s 

was chosen. The upper limit for the natural frequency, 

ωcrit, can be difficult to determine when the system is 

nonlinear as classical stability analysis cannot be 

applied. Thus, an alternative method of finding these 

boundaries is required. To this effect, a program which 

automatically establishes the upper constraint by rapidly 

searching through the gains was developed. This 

program, for a fixed damping ratio, returns the upper 

boundary of the stable region accurate to the number of 

decimal places desired by the user. The main benefit of 

this program is that it can be used for nonlinear and 

linear systems. 

The program works by searching through the gains 

starting at a user defined value. This should be a value 

which the user knows exists within the stable operating 

region for the system. If this is not known, an initial 

value of zero can always be used. The program then 

increases the gain by one unit with each iteration and 

analyses the corresponding system response. It is 

important to bear in mind that, as with tuning the 

controller, small excitations are used so as not to engage 

the actuator discontinuities. This process is repeated 

until the system response exhibits unstable 

characteristics i.e. the response is oscillatory with each 

successive peak increasing in magnitude (Fig.7). This is 

expressed mathematically in equation 8  

X(n) > X(n-1) …(8) 

Where X is the peak amplitude, n = 0,t,1t,2t,3t… where 

n is the discrete time step and t is the sampling period. 

 

Fig.7: Unstable response 

When the above condition (equation 8) becomes true, 

the program returns to the last gain value at which the 



6 

 

system was stable i.e. the value at the preceding 

iteration, and repeats the iterative search but increasing 

the gain by one tenth of the initial unit size used hence 

increasing the accuracy by one decimal place. The 

above process is repeated until a value of gain accurate 

to four decimal places which corresponds to the upper 

limit of the stable operating region is returned. This was 

performed with the damping ratio fixed at the upper and 

lower damping ratio constraints i.e. 1 and 0.5 

respectively. The values of ωcrit corresponding to the 

aforementioned damping ratios were 9.413 rad/s and 

16.86 rad/s respectively. Hence the lower value of ωcrit 

(9.413 rad/s) was used as the upper constraint for the 

natural frequency.  

4.2 MIMO optimisation 

For a MIMO system, it is necessary to adapt 

the algorithm in order to account for the errors 

occurring in multiple signals. In this case, a summation 

of the error signals for all of the outputs is used to 

produce a cumulative error signal. The controller set up, 

however, remains the same as for the SISO system as 

shown in Fig.3. The difference lies in the output signals 

yA and yI which become vector signals with a number of 

elements equal to the number of outputs of the system. 

Consequently, the error signal also becomes a vector 

signal calculated by  

e = (yI(1) – yA((1)) + (yI(2) – yA(2)) + (yI(k) – yA(k)) …(9) 

Where k is the number of outputs of the system. Thus, 

for a system with three outputs, the error signal would 

consist of the addition of three separate error signals. In 

order to obtain the true magnitude of the error however, 

it is necessary that absolute values of the error signals 

are taken so as to prevent any cancellation of error. 

Consider a MIMO system with three outputs producing 

the three error signals A, B and C shown in Fig.8. As 

both errors A an B are positive and C is negative, the 

magnitude of the cumulative error would be erroneous 

if absolute values of the errors were not taken since the 

overall error would be reduced. Thus, absolute values 

are required to produce correct results as shown in 

Fig.8. Hence, the error function now becomes: 

e =│yI(1) – yA((1)│+│yI(2) – yA(2)│+│yI(k) – yA(k)│ …(10) 

The same optimisation procedure as described above for 

a SISO system is subsequently performed on the 

cumulative error signal. 

 

Fig. 8: Cumulative error signal 

 

5. RESULTS 

As was shown in Section 3, the controller can be tuned 

by altering the values of the damping ratio and natural 

frequency matrices. For the results presented in this 

paper, the damping ratios and the natural frequencies 

for each channel were kept the same i.e. the matrices 

were replaced with scalar values in order to keep the 

values the same across all three channels. Initially, 

however, the controller was tuned using the Ziegler 

Nichols tuning method so as to illustrate the problems 

which can be encountered when using manual tuning 

for nonlinear MIMO systems. 

5.1 Zeigler Nichols Tuning 

In order for the Zeigler Nichols tuning method 

to work, the gains were required to be tuned differently. 

The gain equations (6) and (7) can be represented as: 

Kp = [Ks]
-1

p  …(11) 

KI = [Ks]
-1

g  …(12) 

Where p = 2ZdΩn and g = Ωn
2
. The gains could then be 

tuned by altering p and g as opposed to the controller 

natural frequency and damping ratio. As this tuning 

method requires that the integral action on the controller 

to initially be zero, g was set to 1. The matrix [Ks]
-1

 in 

both of the gain equations must remain however, since 

it is part of the RIDE theory. Through increasing the 

value of p, the value which corresponded to the critical 

proportional gain (Kpc in Table.1) was found to be 

26.448 and the corresponding period of oscillation of 

the response signal (Tc) was 0.08s. The formulae in 

Table.1 were subsequently used to determine the values 

of g and p. 
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Control p g 

P 0.5 KPC  

PI 0.45 KPC 1.2 KP/TC 

Table.1: Zeigler Nichols gain formulae 

The values of g and p were found to be 178.524 and 

11.902 respectively. These values, when used in the 

model, yielded a highly undesirable system response as 

shown in Fig.9 

 

Fig.9: Response after Zeigler Nichols Tuning 

It can be seen that after the tedious manual 

tuning process, the resulting gains produce an 

undesirable system response. The following results 

from the auto-tuner demonstrate the benefits that are 

achieved from auto-tuning. 

5.2 Auto-tuning 

Both auto-tuning algorithms were tested with a 

pulse roll rate request of 2 deg/s so as not to excite the 

actuator deflection limit. The initial values for natural 

frequency and damping ratio for the unconstrained 

optimiser were set to 3 rad/s and 0.5 respectively. The 

upper and lower constraints for the constrained 

optimiser can be seen in Table.2. 

 ζ ω (rad/s) 

Lower 

Constraint 
0.5 3 

Upper 

Constraint 
1 9.413 

Table.2: Constraints 

 Fig.10 and Fig.11 show the performance of 

the controller for the same roll rate command after 

constrained and unconstrained tuning respectively. 

 

Fig.10: Response after unconstrained optimisation  

 

Fig.11: Response after constrained optimisation 

The values returned for the natural frequency and 

damping ratio for both tuning algorithms are shown in 

Table.3. 

 ζ ω (rad/s) 

Unconstrained 0.3591 24.4305 

Constrained 0.505 9.41 

Table.3: Tuned values of ζ and ω 

From Fig.10 and Fig.11 it can be seen that the response 

after unconstrained tuning is faster than after 

constrained tuning. However, the response in Fig.10 

also shows a much higher degree of overshoot than that 

in Fig.11. When a higher roll rate was requested, 10 

deg/s, from the model so that the actuator deflection 

limit would be reached, the system became completely 

unstable when the gains obtained from unconstrained 

tuning were used (Fig.12). This shows that the system 

was being pushed too hard and that safe control cannot 

be guaranteed when using the unconstrained tuning 

algorithm. The system response when using the gains 

obtained by constrained tuning however can be seen to 

be stable and to essentially exhibit the same response 

characteristics as when the deflection limit was not 
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being reached (Fig.13). This demonstrates that the 

constrained auto-tuning process presented in this paper 

offers an effective safe tuning solution whilst extracting 

the optimum performance from the control system.  

 

Fig.12: Response for high roll rate request 

(unconstrained tuning) 

 

Fig.13: Response for high roll rate request (constrained 

tuning)  

 

6. CONCLUSION 

A novel tuning method for the RIDE controller 

algorithm has been presented with application to a high 

performance F-18 aircraft model. A comparison was 

made between an unconstrained and a constrained 

tuning algorithm when used to tune the controller’s 

natural frequency. The results show that the constrained 

algorithm is more effective for tuning as it is able to 

achieve safe and optimal controller performance. This is 

due to its ability to locate the global optimum within the 

stable operating region as opposed to the unconstrained 

algorithm which cannot guarantee safe control. Future 

work will include optimising the damping ratio and 

natural frequency of the controller across all three 

channels separately so as to investigate the 

improvement in performance which can be achieved 

through driving different channels harder. A nonlinear 

constraint for the ueq term [5] which is required to 

ensure stability when actuator limits are reached will 

also be implemented. 
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APPENDIX A – Numerical State Space Aircraft Model 
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