Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Donor-acceptor conjugated polymers based on p- and o-benzodifuranone and thiophene derivatives: electrochemical preparation and optical and electronic properties

Zhang, Kai and Tieke, Bernd and Forgie, John C. and Vilela, Filipe and Skabara, Peter J. and Skabara, Peter (2012) Donor-acceptor conjugated polymers based on p- and o-benzodifuranone and thiophene derivatives: electrochemical preparation and optical and electronic properties. Macromolecules, 45 (2). pp. 743-750. ISSN 0024-9297

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A series of pi-conjugated polymers consisting of bis-EDOT or bis-EDTT units and p- or o-diphenylbenzodifuranones have been prepared electrochemically. The monomers and polymers were investigated using UV/vis absorption spectroscopy and cyclic voltammetry. The monomers were synthesized from 3,4-ethylenedioxythien-2-yl or 3,4-ethylenedithiathien-2-yl trimethylstannane and 3,7-bis(4-bromophenyl)benzo[1,2-b:4,5-b']difuran-2,6-dione or 3,6-bis(4-bromophenyl)benzo[1,2-b:6,5-b']difuran-2,7-dione using Stile coupling. The polymers exhibit broad absorption bands, and strong donor-acceptor characteristics with very small band gaps (in a range from 0.40 to 1.20 eV). Electrochemically grown polymer thin films exhibit reversible behavior under oxidative and reductive conditions. Under reduction, the polymer films show color changes from dark to almost transparent.