Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Information communicated by entangled photon pairs

Barnett, Steve (2012) Information communicated by entangled photon pairs. Physical Review A, 85. ISSN 1094-1622

[img]
Preview
PDF
ThomasInfEnt.pdf - Preprint

Download (347kB) | Preview

Abstract

A key goal of quantum communication is to determine the maximum number of bits shared between two quantum systems. An important example of this is in entanglement-based quantum key distribution (QKD) schemes. A realistic treatment of this general communication problem must take account of the nonideal nature of the entanglement source and the detectors. The aim of this paper is to give such a treatment. We obtain analytic expression for the mutual information in terms of experimental parameters. The results are applied to communication schemes that rely on spontaneous parametric down conversion to generate entangled photons. We show that our results can be applied to tasks such as calculating the optimal rate of bits per photon in high-dimensional time-bin-encoded QKD protocols (prior to privacy amplification). A key finding for such protocols is that, by using realistic experimental parameters, one can obtain over 10 bits per photon. We also show how our results can be applied to characterize the capacity of a fiber array and to quantify entanglement using mutual information.