Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Enhancement of ion generation in femtosecond ultraintense laser-foil interactions by defocusing

Xu, M. H. and Li, Y. T. and Carroll, D. C. and Foster, P. S. and Hawkes, S. and Kar, S. and Liu, F. and Markey, K. and McKenna, P. and Streeter, M. J. V. and Spindloe, C. and Sheng, Z. M. and Wahlstrom, C. -G. and Zepf, M. and Zheng, J. and Zhang, J. and Neely, D. (2012) Enhancement of ion generation in femtosecond ultraintense laser-foil interactions by defocusing. Applied Physics Letters, 100 (8). -. ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A simple method to enhance ion generation with femtosecond ultraintense lasers is demonstrated experimentally by defocusing laser beams on target surface. When the laser is optimally defocused, we find that the population of medium and low energy protons from ultra-thin foils is increased significantly while the proton cutoff energy is almost unchanged. In this way, the total proton yield can be enhanced by more than 1 order, even though the peak laser intensity drops. The depression of the amplified spontaneous emission (ASE) effect and the population increase of moderate-energy electrons are believed to be the main reasons for the effective enhancement.