Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Enhancement of ion generation in femtosecond ultraintense laser-foil interactions by defocusing

Xu, M. H. and Li, Y. T. and Carroll, D. C. and Foster, P. S. and Hawkes, S. and Kar, S. and Liu, F. and Markey, K. and McKenna, P. and Streeter, M. J. V. and Spindloe, C. and Sheng, Z. M. and Wahlstrom, C. -G. and Zepf, M. and Zheng, J. and Zhang, J. and Neely, D. (2012) Enhancement of ion generation in femtosecond ultraintense laser-foil interactions by defocusing. Applied Physics Letters, 100 (8). -. ISSN 0003-6951

Full text not available in this repository. (Request a copy from the Strathclyde author)


A simple method to enhance ion generation with femtosecond ultraintense lasers is demonstrated experimentally by defocusing laser beams on target surface. When the laser is optimally defocused, we find that the population of medium and low energy protons from ultra-thin foils is increased significantly while the proton cutoff energy is almost unchanged. In this way, the total proton yield can be enhanced by more than 1 order, even though the peak laser intensity drops. The depression of the amplified spontaneous emission (ASE) effect and the population increase of moderate-energy electrons are believed to be the main reasons for the effective enhancement.