Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Factors affecting solid-phase extraction of semi-volatile organic pollutants from acidic industrial effluent for analysis by gas chromatography

Deans, Iain S. and Davidson, Christine and Littlejohn, David and Brown, Ian (1993) Factors affecting solid-phase extraction of semi-volatile organic pollutants from acidic industrial effluent for analysis by gas chromatography. Analyst, 118 (11). pp. 1375-1382. ISSN 0003-2654

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A method was developed for the solid-phase extraction of toluene, chlorobenzene, xylene, dichlorobenzene and trichlorobenzene from acidic, aqueous industrial effluent, prior to quantification by gas chromatography (GC). A variety of sorbent-solvent systems were investigated and the highest analyte recoveries were obtained with a C18 sorbent and chloroform. Dichloromethane can also be used as an alternative eluent. Up to 100 ml of effluent were passed through the cartridges, containing 500 mg of C18 sorbent, without degradation of the analyte recoveries. As the analytes were completely eluted with 1 ml of chloroform, preconcentration factors of up to 100-fold were achieved. To obtain close to quantitative (100%) recovery of the analytes from samples it is necessary to prevent evaporative losses which occur (a) during storage and sampling, if a headspace is created above the liquid, (b) when sorbent drying times >2 min are used and (c) if there is a significant delay (e.g., 45 min) between drying and elution of the analytes. Accordingly, each cartridge should be loaded and eluted in series to achieve maximum recoveries. The GC method detection limits (without preconcentration) were 0.18-0.33 mug ml-1, which are adequate for the determination of the analytes at concentrations typical of the effluent studied.