Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Degradation mechanism of diethylene glycol units in a terephthalate polymer

Lecomte, Hélène A. and Liggat, John J. (2006) Degradation mechanism of diethylene glycol units in a terephthalate polymer. Polymer Degradation and Stability, 91 (4). pp. 681-689. ISSN 0141-3910

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Diethylene glycol (DEG) is incorporated into poly(ethylene terephthalate) (PET) during industrial synthesis in order to control crystallisation kinetics. DEG is known to be a weak point in the thermal degradation of PET, which is problematic during the recycling of the polymer. Studies on the thermal decomposition of the model polymer poly(diethylene glycol terephthalate) (PDEGT) have been performed using TG, DSC, TVA and spectroscopic techniques. They revealed a degradation behaviour with two distinct steps, where the first step initiates some 100 K below the degradation temperature of PET. The second step is similar to the behaviour of PET. Based on our observations, a new degradation mechanism specific to DEG units is proposed, where random ether groups along the backbone can back-bite and form cyclic oligomers. These cyclic species, containing ether moieties, are evolved at 245 °C and constitute the first of the two steps of degradation observed for PDEGT.