Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with orbitrap mass spectrometry for metabolomic studies of human urine

Zhang, Tong and Creek, Darren J. and Barrett, Michael P. and Blackburn, Gavin and Watson, David G. (2012) Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with orbitrap mass spectrometry for metabolomic studies of human urine. Analytical Chemistry, 84 (4). pp. 1994-2001. ISSN 0003-2700

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this study, we assessed three liquid chromatographic platforms; reversed phase (RP), aqueous normal phase (ANP), and hydrophilic interaction (HILIC) for the analysis of polar metabolite standard mixtures and for their coverage of urinary metabolites. The two zwitterionic HILIC columns showed high-quality chromatographic performance for metabolite standards, improved separation for isomers, and the greatest coverage of polar metabolites in urine. In contrast, on the reversed phase column, most metabolites eluted very rapidly with little or no separation. Using an Exactive Orbitrap mass spectrometer with a HILIC liquid chromatographic platform, approximately 970 metabolite signals with repeatable peak areas (relative standard deviation (RSD) <= 25%) could be putatively identified in human urine, by elemental composition assignment within a 3 ppm mass error. The ability of the methodology for the verification of nonmolecular ions, which arise from adduct formation, and the possibility of distinguishing isomers could also be demonstrated. Careful examination of the raw data and the use of masses for predicted metabolites produced an extension of the metabolite list for human urine.