Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Simple data-reduction method for high-resolution LC-MS data in metabolomics

Scheltema, R. A. and Decuypere, S. and Dujardin, J. C. and Watson, D. G. and Jansen, R. C. and Breitling, R. (2009) Simple data-reduction method for high-resolution LC-MS data in metabolomics. Bioanalysis, 1 (9). pp. 1551-1557. ISSN 1757-6180

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Metabolomics LC-MS experiments yield large numbers of peaks, few of which can be identified by database matching. Many of the remaining peaks correspond to derivatives of identified peaks (e.g., isotope peaks, adducts, fragments and multiply charged molecules). In this article, we present a data-reduction approach that automatically identifies these derivative peaks. Results: Using data-driven clustering based on chromatographic peak shape correlation and intensity patterns across biological replicates, derivative peaks can be reliably identified. Using a test data set obtained from Leishmania donovani extracts, we achieved a 60% reduction of the number of peaks. After quality control filtering, almost 80% of the peaks could putatively be identified by database matching. Automated peak filtering substantially speeds up the data-interpretation process.