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The salmon louse Lepeophtheirus salmonis is the most important ectoparasite of farmed salmonids in the
Northern hemisphere, having a major economic and ecological impact on the sustainability of this sector of
the aquaculture industry. To a large extent, control of L. salmonis relies on the use of topical delousing
chemical treatments in the form of baths. Improvements in methods for the administration and assessment
of bath treatments have not kept pace with the rapid modernization and intensification of the salmon
industry. Bath treatments present technical and biological challenges, including best practice methods for the
estimation of the effect of lice treatment interventions. In this communication, we compare and contrast
methods to calculate and interpret treatment effectiveness at pen and site level. The methods are illustrated
for the calculation of the percentage reduction in mean abundance of mobile lice with a measure of
confidence. Six different methods for the calculation of confidence intervals across different probability levels
were compared. We found the quasi-Poisson method with a 90% confidence interval to be informative and
robust for the measurement of bath treatment performance.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The salmon louse Lepeophtheirus salmonis constitutes a persistent
parasite infection and a constant source of production losses in the
culture of salmonids in the Northern hemisphere. Control of the
parasite relies on the use of chemical treatments administered
topically in bath treatments, and orally in the feed. In recent years,
the use of bath treatments has increased due to the apparent
development and spread of resistance to the widely used in-feed
treatment, emamectin benzoate (Jones et al., in review; Lees et al.,
2008; NFSA, 2010a). There is currently no standardized way to
estimate and report treatment effectiveness in net pen fish farms,
unlike the evaluation of efficacy of parasiticidal treatments in
terrestrial species (Coles et al., 1992). In this paper, we propose a
method and guidelines for evaluation and interpretation of the
effectiveness of bath treatments. The method involves calculation of a
point estimate of the percentage reduction in the number of mobile
lice, with the associated uncertainty expressed as a confidence
interval.

It is crucial to assess the true effect of bath treatments and thus
provide a basis for detection and correction of intrinsic and external
factors that limit the use of these treatments in the field.
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However, current legislation neither provides grounds for the
selected 90% margin, nor guidelines for the evaluation of treatment
effect (NFSA, 2010b; NFSA, 2011). The proposed method is a more
realistic approach to evaluation and interpretation of the true effect of
treatment. It will be more sensitive in identifying those pens and sites
which are below the recommended level of efficacy and decrease the
associated risk of treatment resistance developing (Denholm et al.,
2002).

2. Materials and methods

2.1. Study population

The dataset originates from a study conducted (Heuch et al., 2003)
on salmon and rainbow trout farming sites located on the Norwegian
coast. Sites with data on samplings performed the week prior to and
after delousing treatment were selected. In this subset, a total of 1002
fish from five different sites and 18 pens were inspected on 24
treatment occasions between September 1997 and November 1999.
For treatment evaluation, we extracted counts of mobiles within the
week prior and after treatment. The majority of pens (21/24) had a
single treatment and the three remaining pens in the same site were
treated in three different occasions. The dataset included counts for
chalimus, pre-adult, adult male and adult females of L. salmonis of 20
or more individual fish from each pen on each sampling occasion.
Counts were performed at weekly, biweekly or monthly intervals
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Table 1
Mean and variance of the counts of L. salmonis mobiles (pre-adult and adult stages)
before (t0) and after treatment (t1) according to site, treatment date (month, year)
and pen.

Site Treatment
date

Pen
number

Mean
(t0)

Variance(t0) Mean
(t1)

Variance
(t1)

1 7/1997 30 10.1 16.2 0 0
1 7/1997 Site average 10.1 16.2 0 0
1 8/1998 22 11.7 18.3 3.9 9.5
1 8/1998 27 5.3 13.5 1.9 2.8
1 8/1998 Site average 8.7 26.2 2.9 7
2 8/1997 1 16.5 297 0.1 0.1
2 8/1997 2 6.4 8.3 0.9 1.7
2 8/1997 3 12.6 75.5 0.6 0.9
2 8/1997 Site average 11.8 140.4 0.5 1
3 10/1998 1 0.4 0.2 0 0
3 10/1998 6 0.1 0.2 0 0
3 10/1998 7 0.5 0.5 0 0
3 10/1998 Site average 0.3 0.4 0 0
3 7/1999 1 4.3 10.7 0.3 0.4
3 7/1999 6 3.6 3.2 0.1 0.1
3 7/1999 7 3.7 6.1 0.2 0.1
3 7/1999 Site average 3.9 6.6 0.2 0.2
3 8/1999 1 1.8 2.3 0.1 0.1
3 8/1999 6 1.5 2.1 0.3 0.2
3 8/1999 7 4.4 5.7 0.3 0.2
3 8/1999 Site average 2.5 5 0.2 0.2
4 8/1998 5 1 1.3 0 0
4 8/1998 Site average 1 1.3 0 0
5 3/1999 7 0.9 0.9 0 0
5 3/1999 9 0.7 1.1 0 0
5 3/1999 12 0.8 0.6 0 0
5 3/1999 Site average 0.8 0.8 0 0
5 7/1999 21 4.6 5.4 0.9 3.3
5 7/1999 24 6.8 5 0.1 0.1
5 7/1999 26 4.7 3.4 0 0
5 7/1999 Site average 5.3 5.5 0.3 1.2
5 8/1999 20 4.2 2.3 0 0
5 8/1999 25 4.2 3.3 0.4 0.5
5 8/1999 Site average 4.2 2.7 0.2 0.3
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depending on site and study period. Bath treatments were undertak-
en with deltamethrin (AlphaMax®, Alpharma) using skirts. At the
time, this was the most popular and effective delousing treatment
available (Denholm et al., 2002).

We describe the distribution of mobile lice (pre-adult and all adult
sea lice stages) both at pen and site level in the week prior to and
1 week after treatment. The distribution of mobiles tends to vary
depending on mean abundance of L. salmonis (Heuch et al., 2011). For
Poisson regression, goodness of fit of the model was tested using
Pearson's chi-square. Empirical data were fit to the Poisson, quasi-
Poisson and negative binomial distributions with maximum likeli-
hood using the ‘fitdist’ and the ‘vcd’ packages available with R
software (Friendly, 2000; Venables and Ripley, 2002; Vose, 2008).
Overdispersion is characteristic of most parasitic infections
(Anderson and May, 1992) including L. salmonis (Baillie et al., 2009;
Heuch et al., 2011). Here, overdispersion refers to the variance of
mobiles being larger than the mean. An indication of overdispersion
is when the deviance measure of the goodness-of-fit for full model
(standardized residuals) exceeds its degrees of freedom (Venables
and Ripley, 2002).

2.2. Calculation of estimates and confidence interval for the percent
reduction in count of mobiles

The percentage treatment effectiveness is calculated as 100 � μ0−μ1
μ0

� �
,

where μ0 and μ1 are the mean abundances of L. salmonis before and after
treatment, respectively.

For calculation of treatment effectiveness, we have used mobiles
(pre-adult and adult stages). Counts of chalimus stages were not
included because this stage is known to be relatively insensitive to
most chemical treatments used in baths (Burka et al., 1997). Due to
their small size (0.7–2.7 mm) they are also more difficult to see when
examining the fish. Hence, counts of chalimus are often under-
estimated on the farm (Beamish et al., 2005; Schram, 1993).

Calculation of treatment effectiveness was made both at individ-
ual pen and site level. At site level, we aggregated counts of mobiles
for all treated pens to obtain a single estimate of treatment
effectiveness. Confidence intervals for the ratio of two means were
calculated using approximate methods (Chaudhary and Stearns,
1996; Cimermanová, 2007). Six methods were used to calculate
confidence intervals with the ‘pairwiseCI’ package available in R
(R Development Core Team, 2008). These included two methods for
continuous data: a two-sample t-test with Fieller confidence intervals
assuming heteroscedasticity (Hasler and Hothorn, 2008; Hasler et al.,
2008), and the ratio of two means assuming a lognormal distribution
(log-normal ratio) (Chen and Zhou, 2006). Three methods for count
data were also evaluated, the Poisson, quasi-Poisson and negative
binomial methods (Venables and Ripley, 2002; Zeileis et al., 2008).
The last method is a percentile bootstrap confidence interval using the
Harrell–Davis method (Harrell and Davis, 1982). The original dataset
was modified for calculation of the confidence intervals for the two-
sample t-test and the log-normal ratio. For the latter, 0.1 was added to
all data; in the former a value of 0.1 was added to one fish if none of the
fish in the sample were infected with mobiles (Tukey, 1977).

A two sided confidence interval was chosen to state the precision
of the estimate of treatment effectiveness (Steiger and Fouladi, 1997).
We examined confidence levels of 70%, 80%, 90% and 95% to study
their effects on the interval widths. The confidence level is dictated by
criteria which include confidence and informativeness or decisive-
ness (Senn, 2007; Smithson, 2003).

2.3. Treatment vs control abundance for effectiveness

The effects of synthetic pyrethroids have been previously
investigated. Several studies have shown that adult and pre-adult
stages of L. salmonis are highly susceptible to synthetic pyrethoids
(Hart et al., 1997).

The required minimum margin is decided by the user, although
common practice is often used such as in trials of human antibiotics,
where a 10% or 20% difference compared to the efficacy of the
reference treatment is used (FDA, 2010). The same margin is
recommended for the approval of new antiparasitic treatments in
terrestrial animals (Burridge et al., 2010; CVMP, 2001; Schall and
Luus, 2011). The Norwegian Food Safety Authority (NFSA), states that
a 90% reduction is satisfactory (NFSA, 2010b; NFSA, 2011).

Treatment effectiveness is here measured relative to a chosen
standard of treatment efficacy which could be any value. In the case of
synthetic pyrethroids, prior studies have shown the average percent
reduction in pre-adults and adult females was in the 95 to 99% range
(Hart et al., 1997). In this case, we have followed the guidelines laid
out by the NSFA. We classify the treatment effect as acceptable or
unacceptable (failure). Treatments were considered acceptable when
the calculated lower confidence limit is equal to or higher than 90%.
When the calculated lower limit is below the 90%minimummargin of
efficacy, the treatments were considered unacceptable.

3. Results

3.1. Descriptive statistics

In the extracted subset of data, average counts of mobiles per fish
before treatment were 4.6 (0.1 to 16.5) at pen and 4.9 (0.3 to 10.1) at
site level (Table 1). The calculated mean and variance were similar at
mobile counts around 10–12 per fish (Fig. 1a). In 60% (6/10) of the
sites and 75% (18/24) of the pens, the Poisson distribution fits the
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Fig. 1. Mean to variance relationship in the data, for the counts of L. salmonis mobiles before (A) and after treatment (B) at pen (n=24) and site (n=10) level. The black line
represents a linear function with a slope of 1 and 0 intercept (mean=variance). Points above the black line indicate records for fish where the variance of mobiles is larger than the
mean (overdispersion).
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empirical data well (chi-square goodness of fit test for a Poisson
distribution, p>0.05). After treatment (Fig. 1b), counts of mobiles are
dominated by zero values and neither the Poisson nor negative
binomial fits the empirical data well due to the excess of zeros
present.

3.2. Calculation of confidence intervals using different methods width CI

Six methods were used to calculate the 95% confidence intervals
for the estimates of treatment effectiveness at pen (Fig. 2) and site
levels (Fig. 3): the t-test, the log-normal ratio, the Harrell–Davis
(bootstrap), the Poisson, the quasi-Poisson and the negative binomial.
The widths of the confidence intervals varied depending on the
method used. The Harrell–Davis method produced the narrowest
interval (Figs. 2 and 3). The widest intervals were obtained with the
log-normal method. The widths of the confidence interval were
similar for the Poisson, the t-test, the quasi-Poisson and the negative
binomial. For any of these methods the widths of the confidence
interval fell between those of the log-normal ratio and the bootstrap
method. The point estimates of treatment effectiveness calculated
with the t-test, log-normal and Harrell–Davis methods were slightly
different (Figs. 2 and 3) as a result of modification of the original
dataset (t-test and log-normal method) or the method for calculation
(Harrell–Davis).

Calculations using the log-normal method produced a large
number of treatment failures, indeed 29.1% (7/27) of the pen-level
treatments were acceptable. In contrast, bootstrapping results gave
the largest number of acceptable treatments (75%) and the least
number of failures (25%) (Tables 2 and 3).

Methods for count data (Poisson, quasi-Poisson and negative
binomial) produced comparable results. At pen level, the quasi-
Poisson produced less failed treatments compared to the Poisson and
negative binomial (Tables 2 and 3). At site level 70% (7/10) to 80% (8/
10) of treatments were acceptable. One more site failed the treatment
with the quasi-Poisson compared to the Poisson and negative
binomial. The three sites where treatment failed had a large
proportion of treatment failures at pen level ranging from 67% (2/3)
to 100% (2/2 and 3/3) (data not shown).

We compared the width of the confidence intervals calculated
with the quasi-Poisson method at four different confidence levels:
70%, 80%, 90% and 95%. Obviously smaller confidence levels
reduced the width of the confidence interval (Figs. 4 and 5) and
therefore tended to reduce the number of failed treatments
(Tables 4 and 5).

Evaluation of treatments was carried out using the quasi-Poisson
method with a 90% confidence level. At individual pen level, 21% of
the pens had an estimate of effectiveness below 90%, and this
increased two-fold (46%) when the evaluation was made using
confidence intervals. A threefold increase (from 10% to 30%) in the
number of failed treatments was shown at site-level when using
confidence limits compared to the point estimate of treatment
effectiveness.



Fig. 3. Estimates and 95% CI of treatment effectiveness against L. salmonis treatment effectiveness for 10 treatment events aggregated at the site level. The confidence intervals were
calculated using six different methods: t-test, log-normal, Harrell–Davis, Poisson, quasi-Poisson and negative binomial.

Fig. 2. Estimates and 95% CI of treatment effectiveness against L. salmonis in 24 salmon pens. The confidence intervals were calculated using six different methods: t-test, log-
normal, Harrell–Davis, Poisson, quasi-Poisson and negative binomial.
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Table 2
Number of treatments against L. salmonis at pen level (n=24) that were acceptable (A)
at 90% effectiveness and unacceptable (U) according to the methods described in the
text. Estimates and 95% CI were calculated with six methods.

Result Method for calculation of CI

t-testa log-normal Harrell–Davis Poisson Quasi-Poisson Negative
binomial

A 14 7 19 8 11 8
U 9 17 5 16 13 16

a The two-sample t-test could not compute a 95% confidence interval for treatment
performed at Site 3 (Pen 6) on 10/1998.

Table 3
Number of treatments against L. salmonis at site level (n=10) that were acceptable (A)
at 90% effectiveness and unacceptable (U) according to the methods described in the
text. Estimates and 95% CI of treatment effectiveness were calculated with six methods.

Result Method for calculation of CI

t-test log-normal Harrell–Davis Poisson Quasi-Poisson Negative
binomial

A 7 5 9 8 7 8
U 3 5 1 2 3 2
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4. Discussion

The continued use of parasitic treatments has resulted in the
development and spread of resistance for common drugs such as
organophosphates (Fallang et al., 2004; Jones et al., 1992; Tully
and McFadden, 2000), avermectins (Jones et al., in review; Lees et
al., 2008); pyrethroids (Sevatdal and Horsberg, 2003) and
hydrogen peroxide (Treasurer et al., 2000). The growing awareness
of drug resistance emergence in certain sea lice populations and
the need for information on their occurrence and spread have
increased the requirements for standardized methods of treatment
evaluation.

Currently, evaluation of treatment is carried out by comparing
the point estimate of treatment effectiveness without confidence
limits to a pre-specified fixed value. Evaluation of treatment
efficacy in this manner has limitations such as uncertainty in the
estimate of treatment efficacy. Hence, it is desirable to calculate the
variability in efficacy as estimated, through the use of confidence
intervals. A potential problem for the calculation of CIs is the lack
of control or non-treated groups of fish, as this precludes a direct
method for calculation of confidence intervals (Coles et al., 1992).
Several solutions were proposed by Fieller and others, who
developed theorems to calculate a confidence interval from a
ratio of two means (Chaudhary and Stearns, 1996; Cimermanová,
2007).

We have calculated and compared six methods for calculation of
generalized confidence intervals. The log-normal ratio produced the
widest confidence interval and bootstrapping the narrowest intervals.
These two and the t-test produce an estimate of treatment
effectiveness that is slightly different from that calculated using the
formula in Section 2.2, and therefore were considered inferior to the
ones used for count data. The Poisson, quasi-Poisson and negative
binomial are preferred because they are more appropriate for count
data. All three methods give confidence intervals with similar
characteristics.

Using CIs, we here propose basic guidelines for calculation and
evaluation of topical treatments against L. salmonis, so that data on
the effectiveness of treatments as well as on the epidemiology of drug
resistance in sea lice can be more accurately determined.

In our data, the distributions of mobiles prior to treatment fit the
Poisson distribution when the average number of mobiles is below
ten mobiles per fish. This is in agreement with published studies in
Norwegian locations (Heuch et al., 2011). Salmon lice can exhibit
overdispersion (Heuch et al., 2011). However, overdispersion is likely
to occur at site level due to large differences between levels of
mobiles among pens (Heuch et al., 2011; Revie et al., 2007).

Overdispersion can cause underestimation of the standard error
and confidence intervals which are too narrow, resulting in wrong
inference for the treatment effect. Both the negative binomial and
quasi-Poisson are commonly used for data with unbounded positive
range whose sample variance is larger than the mean (Ver Hoef and
Boveng, 2007). For this reason, we have selected the quasi-Poisson
method. The quasi-Poisson produces parameter estimates equivalent
to the Poisson, where the mean is equivalent to that obtained using
the Poisson and the variance is calculated as a multiplicative constant
of the mean. This results in standard errors that are larger than those
of the Poisson. Quasi-likelihood methods are based on generalized
linear model principles and allow calculation of parameter estimates
based on a specification of the mean and variance of the model
observations without specification of an underlying log-like function
(Hilbe, 2011).

Treatment effectiveness was calculated and compared at pen and
site level with four different confidence levels. The proportion of
acceptable treatments is larger at site compared to pen at the same
confidence level. At pen level, disagreement was seen in four out of
24 treatments between the 70% and 95% confidence levels. In three
out of four of these pens, treatments were unacceptable at the 95%,
but acceptable at the 80%, and belonged to sites where treatment
effect on the site and adjacent pens were also acceptable (at the 95%
confidence level). In the fourth pen, treatment was acceptable only
at the 70% level, but failed at higher confidence levels both on the
site and pen. The best agreement between the treatment effect at
site and pen level was achieved at the 90–95% and 80% confidence
level, respectively. These results are not surprising considering that
more data were available, and therefore, less uncertainty and higher
precision were found on site versus pen treatments. In this case, it
could be justified to use a high confidence level but the choice of
confidence level should be dictated by the relative incentives for
accuracy and precision in each field situation. Yaniv and Foster
(1997) have suggested that the precision of uncertain judgments
involves a trade-off between these two competing objectives.
Selection of a particular method and confidence level should be
further investigated due to the limited availability of data and the
substantial differences in today's production management in
aquaculture.

Treatment results are classified in two categories, acceptable and
unacceptable. We have used a fixed margin for evaluation of
treatments since the use of a placebo or a non-treatment group is
not possible in field treatments. The expected treatment outcomewas
equal to or higher than a 90% reduction in mean abundance of
mobiles after treatment, based on prior studies (Hart et al., 1997). A
non-inferior margin was initially set at 90% as recommended in both
the guidelines on the efficacy requirements for new parasiticides
(CVMP, 2004; Marchiondo et al., 2007) and regulations set by the
Norwegian Food Safety Authority (NFSA). The NFSA defines as
failures those delousing treatments with effectiveness below 90%
(NFSA, 2011) which must be reported, and further investigated to
evaluate possible drug resistance (Directorate of Fisheries, 2009;
NFSA, 2010b).

A larger number of treatments would have been deemed to be
“failures” if the confidence interval approach had been used rather
than a point estimate of treatment effectiveness. Here the lower
confidence limits were below the 90% effectiveness level in the
majority of pen treatments. This result is not surprising considering
that treatments performed with skirts are much less effective than
with full tarpaulin (Corner et al., 2011; Fridell, 2009; SEARCH
Consortium, 2006). It is also possible that treatments were limited
to a group of pens instead of all pens on the site, which will negatively
impact the effect of treatment both at pen and site level. Regardless,



Fig. 4. Estimates of L. salmonis treatment effectiveness calculated with confidence levels of 70%, 80%, 90% and 95% in all treated pens (n=24) using the quasi-Poisson method.

Fig. 5. Estimates of L. salmonis treatment effectiveness calculated with confidence levels of 70%, 80%, 90% and 95% in treatments for all sites (n=10) using the quasi-Poisson method.
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Table 4
Number of treatments against L. salmonis at pen level (n=24) that were acceptable
(A) and unacceptable (U) calculated with the “quasi-Poisson” method and using four
different confidence levels.

Result 95% 90% 80% 70%

A 11 12 14 15
U 13 12 10 9

Table 5
Number of treatments against L. salmonis at farm level (n=10) that were acceptable
(A) and unacceptable (U) calculated with the “quasi-Poisson” method and using four
different confidence levels.

Result 95% 90% 80% 70%

A 7 7 8 8
U 3 3 2 2
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analysis of the factors related to treatment failure is beyond the scope
of this study.

Finally, calculation of the treatment at site level was obtained by
aggregating counts of mobiles from the available pens. The propor-
tion of treatment failures was higher at pen than site level due to the
average effect, and smaller variance from adding multiple pens and
using a larger sample size. Sample size is a major determinant on the
width of the confidence interval. Hence, appropriate sample sizes
need to be calculated for estimations of effectiveness. Recommenda-
tions around sample size are challenging and beyond the objectives of
this study, as additional theoretical (statistical power, for example)
and practical issues (feasibility or cost associated with sampling, for
example), that are not discussed in this study, need to be taken into
consideration.

In this study, counts of mobiles were only available for a small
proportion of pens on each site, and consequently, evaluation of
treatment effect is likely not representative for the whole site as the
sample of pens used was neither sufficient nor randomly selected.
Hence, evaluation of the treatment at site level should include
preferably all pens on the site to reduce the bias associated with the
selection of a group of pens. This is achievable in Norway where large
scale aquaculture uses fewer pens per site and monitoring of sea lice
levels is performed in all pens at biweekly intervals.

In conclusion, it is more informative to provide measures of
treatment effect together with confidence intervals. This will be
useful for the early detection of changes in drug sensitivity and also
for identifying technical problems associated with the application of
baths. The proposed method can elucidate the current situation
regarding the effectiveness of different delousing treatments in
Norway and provide the basis for setting guidelines which are
practical but also robust thus meeting the requirements of regulatory
authorities and other stakeholders.
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