Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Solution-phase photochemistry of a [FeFe]hydrogenase model compound: evidence of photoinduced isomerisation

Kania, Rafal and Frederix, Pim W. J. M. and Wright, Joseph A. and Ulijn, Rein V. and Pickett, Christopher J. and Hunt, Neil T. (2012) Solution-phase photochemistry of a [FeFe]hydrogenase model compound: evidence of photoinduced isomerisation. Journal of Chemical Physics, 136 (4). -. ISSN 0021-9606

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The solution-phase photochemistry of the [FeFe] hydrogenase subsite model (mu-S(CH2)(3)S)Fe-2(CO)(4)(PMe3)(2) has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds. (C) 2012 American Institute of Physics. [doi:10.1063/1.3679387]