Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Loss of Gli3 enhances the viability of embryonic telencephalic cells in vitro

Zaki, Paulett A and Martynoga, Ben and Delafield-Butt, J T and Fotaki, V and Yu, T and Price, D J (2005) Loss of Gli3 enhances the viability of embryonic telencephalic cells in vitro. European Journal of Neuroscience, 22 (6). pp. 1547-1551. ISSN 0953-816X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The transcription factor Gli3 is important for brain and limb development. Mice homozygous for a mutation in Gli3 (Gli3(Xt/Xt)) have severe abnormalities of telencephalic development and previous studies have suggested that aberrant cell death may contribute to the Gli3(Xt/Xt) phenotype. We demonstrate that telencephalic cells from embryonic Gli3(Xt/Xt) embryos survive better and are more resistant to death induced by cytosine arabinoside, a nucleoside analogue that induces death in neuronal progenitors and neurons, than are control counterparts in vitro. Culture medium conditioned by Gli3(Xt/Xt) cells is more effective at enhancing the viability of control telencephalic cells than medium conditioned by control cells, indicating that Gli3(Xt/Xt) cells release a factor or factors which enhance telencephalic cell viability. Gli3(Xt/Xt) cells are also more sensitive to released factors present in conditioned media. These data suggest that Gli3 plays both cell-autonomous and cell-nonautonomous roles in mediating telencephalic cell viability.