Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Prospective guidance in a free-swimming cell

Delafield-Butt, Jonathan and Pepping, Gert-Jan and McCaig, Colin and Lee, David (2012) Prospective guidance in a free-swimming cell. Biological Cybernetics, 106 (4-5). pp. 283-293. ISSN 0340-1200

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A systems theory of movement control in animals is presented and applied to explaining the controlled behaviour of the single-celled Paramecium caudatum in an electric field. The theory – General Tau Theory – is founded on three basic principles: (i) all purposive movement entails prospectively controlling the closure of action-gaps (e.g. a distance gap when reaching, an angle gap when steering); (ii) the sole informational variable required for controlling gaps is the relative rate of change of the gap (the time derivative of the gap size divided by the size), which can be directly sensed; and (iii) coordinated movement is achieved by keeping the relative rates of change of gaps in constant ratio. The theory is supported by studies of controlled movement in mammals, birds, and insects. We now show for the first time that it is also supported by single-celled paramecia steering to the cathode in a bi-polar electric field. General Tau Theory is deployed to explain this guided steering by the cell. This presents the first computational model of prospective perceptual control in a non-neural, single-celled system.