Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Functionalised nanoparticles and SERS for bioanalysis

Graham, Duncan and Faulds, Karen and Thompson, David and McKenzie, Fiona and Dalton, Colette and Robson, Anna and Stevenson, Ross (2011) Functionalised nanoparticles and SERS for bioanalysis. [Review]

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Metallic nanoparticles can be used as materials for a wide variety of purposes including building blocks for nanoassemblies, substrates for enhanced spectroscopies such as fluorescence and Raman and as labels for biomolecules. Here we report how silver and gold nanoparticles can be functionalised with specific biomolecular probes to interact in a specific manner with a target molecule to provide a change in the properties of the nanoparticles which can be measured to indicate the molecular recognition event. Examples of this approach that will be discussed include DNA hybridisation to switch on surface enhanced resonance Raman scattering (SERRS) when a specific target sequence is present, recognition of specific proteins by aptamer functionalised nanoparticles by surface plasmon resonance and SERRS and use of nanoparticles functionalised with antibodies to provide a new type of immunoassay. In addition a new use of dip pen nanolithography in producing nanoarrays of biomolecules for detection by SERRS on a structured metal surface will be presented.