Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A new catch in the SNARE

Pratelli, Réjane and Sutter, Jens and Blatt, Michael R (2004) A new catch in the SNARE. Trends in Plant Science, 9 (4). pp. 187-195. ISSN 1360-1385

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Vesicle traffic underpins cell homeostasis, growth and development in plants. Traffic is facilitated by a superfamily of proteins known as SNAREs ( soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) that interact to draw vesicle and target membrane surfaces together for fusion of the bilayers. Several recent findings now indicate that plant SNAREs might not be limited to the conventional 'housekeeping' activities commonly attributed to vesicle trafficking. In the past five years, six different SNAREs have been implicated in stomatal movements, gravisensing and pathogen resistance. These proteins almost certainly do contribute to specific membrane fusion events but they are also essential for signal transduction and response. Some SNAREs can modulate the activity of non-SNARE proteins, notably ion channels. Other examples might reflect SNARE interactions with different scaffolding and structural components of the cell.