Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Setting SNAREs in a different wood

Sutter, Jens and Campanoni, Prisca and Blatt, Michael R and Paneque, Manuel (2006) Setting SNAREs in a different wood. Traffic, 7 (6). pp. 627-638. ISSN 1398-9219

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Vesicle traffic is essential for cell homeostasis, growth and development in plants, as it is in other eukaryotes, and is facilitated by a superfamily of proteins known as soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs). Although SNAREs are well-conserved across phylla, genomic analysis for two model angiosperm species available to date, rice and Arabidopsis, highlights common patterns of divergence from other eukaryotes. These patterns are associated with the expansion of some gene subfamilies of SNAREs, the absence of others and the appearance of new proteins that show no significant homologies to SNAREs of mammals, yeast or Drosophila. Recent findings indicate that the functions of these plant SNAREs also extend beyond the conventional 'housekeeping' activities associated with vesicle trafficking. A number of SNAREs have been implicated in environmental responses as diverse as stomata movements and gravisensing as well as sensitivity to salt and drought. These proteins are essential for signal transduction and response and, in most cases, appear also to maintain additional roles in membrane trafficking. One common theme to this added functionality lies in control of non-SNARE proteins, notably ion channels. Other examples include interactions between the SNAREs and scaffolding or other structural components within the plant cell.