Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Dynamics and energy transfer of Sm2+ in KY3F10 crystals

Yamaga, Mitsuo and Nakamura, Tatsuya and Oda, Yohei and Wells, Jon-Paul R. and Han, Thomas P. J. (2011) Dynamics and energy transfer of Sm2+ in KY3F10 crystals. Journal of Ceramic Processing Research, 12 (specia). S241-S245. ISSN 1229-9162

Full text not available in this repository. (Request a copy from the Strathclyde author)


Three distinct Sm2+ centers in KY3F10 have been identified by laser selective excitation. The excited states of two of the Sm2+ centers consist of the D-5(J) (J = 0,1,2,3) multiplets and high lying 4f(5)5d states, whereas the bottom of the 4f(5)5d states for the third Sm2+ center lies just above the D-5(0) nmItiplet. Vacuum ultraviolet (VUV) and ultraviolet (UV) excitation, corresponding to the 4f -> 5d transitions, produce cascade luminescence from the D-5(J) (J = 0,1,2,3) excited multiplets to the lowest F-7(J) (J = 0,1,2,3,4) multiplets. UV excitation also produces a broad emission band with a peak at 450 nm, which may be assigned to color centers (F center) being an electron trapped at a F- vacancy as a charge compensator for Sm2+. The temperature dependence of the Sm2+ luminescence spectra excited by VUV and UV radiation clearly demonstrates inter-configurational relaxation from the 4f(5)5d excited states to the D-5(J) (J = 0,1,2,3) multiplets and intra-configurational relaxation from the D-5(3) multiplet to the D-5(J) (J = 0,1,2) multiplets. The luminescence decay curves also show energy transfer between the two Sm2+ centers.