Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Fast-responding measurements of power system harmonics using discrete and fast fourier transforms with low spectral leakage

Roscoe, Andrew J. and Carter, R. and Cruden, A. and Burt, Graeme M. (2011) Fast-responding measurements of power system harmonics using discrete and fast fourier transforms with low spectral leakage. In: Renewable power generation (RPG 2011). IEEE, New York, pp. 1-6.

[img]
Preview
PDF
C_2011_Roscoe_IET_RPG_DFT_vs_FFTpdf_PostPrint.pdf - Accepted Author Manuscript

Download (959kB) | Preview

Abstract

Conventional wisdom dictates that a Fast Fourier Transform (FFT) will be a more computationally effective method for measuring multiple harmonics than a Discrete Fourier Transform (DFT) approach. However, in this paper it is shown that carefully coded discrete transforms which distribute their computational load over many frames can be made to produce results in shorter execution times than the FFT approach, even for large number of harmonic measurement frequencies. This is because the execution time of the presented DFT actually rises with N and not the classical N2 value, while the execution time of the FFT rises with Nlog2N.