Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A GSC employing two-dimensional frequency invariant filters

Liu, Wei and Weiss, S. and Hanzo, L. (2004) A GSC employing two-dimensional frequency invariant filters. In: Proceedings of the Sensor Array and Multichannel Signal Processing Workshop 2004. IEEE, pp. 84-88. ISBN 0-7803-8545-4

[img]
Preview
PDF
liu04e.pdf - Final Published Version

Download (235kB) | Preview

Abstract

In this paper, based on the generalised sidelobe canceller (GSC), we propose a novel broadband adaptive beamformer, where its quiescent vector and blocking matrix are replaced by a series of two dimensional frequency invariant filters (FIFs). The new quiescent vector forms a beam pointing to the signal of interest, whereas the new blocking matrix forms a number of beams pointing to other directions, with a zero response to the signal of interest. As opposed to standard beam space techniques, the FIFs need not have a very low sidelobe level, and the number of FIFs that can be implemented also increases. Compared with the traditional GSC, a faster convergence speed is achieved in addition to a resultant frequency-invariant beam pattern, as shown by simulations.