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ABSTRACT

In this paper, a new class of broadband arrays with frequency-
invariant beam patterns is proposed. By suitable substitutions, the
beam pattern of a continuous sensor array with continuous tem-
poral processing can be regarded as the Fourier transform of its
spatio-temporal distribution. Based on this principle, starting from
the desired frequency-invariant beam pattern, and by a series of
substitutions, a simple design method is derived. This method can
be applied to one-dimensional (1-D) , 2-D, or 3-D broadband ar-
rays, either with continuous arrays and signal processing or with
discrete arrays and signal processing. A 2-D discrete design ex-
ample is presented.

1. INTRODUCTION

In the past, broadband beamformers have been studied ex-
tensively due to its applications to sonar, radar and communica-
tions [1]. Amongst them is a class of arrays with frequency invari-
ant beam patterns [2, 3, 4], for which a systematic method has been
proposed in [4] and can be applied to one-dimensional (1-D), two-
dimensional (2-D) and three-dimensional (3-D) arrays. The design
for 1-D array is relatively simple because of the dilation property,
but for higher-dimensional arrays this property is not guaranteed
and can lead to complications.

In this paper, we propose a new class of frequency-invariant
broadband arrays, which exploit the Fourier transform relationship
between the array’s spatio-temporal distribution and its beam pat-
tern. Starting from the desired frequency-invariant beam pattern,
by a series of substitutions a simple design method is found for fre-
quency invariant beamforming design. This method can be applied
to 1-D, 2-D and 3-D broadband arrays and a design example of a 2-
D array is given to show its effectiveness. A previously proposed
frequency invariant linear array [5] can be regarded as a special
case of this new class of arrays. Comparing with [4], the main
advantage of the proposed scheme lies in its extreme simplicity as
result can be obtained directly by the Fourier transform.

The paper is organised as follows. Section 2 deals with the
problem of continuous sensors and signal. Section 3 is focused on
the case of discrete sensors and signals. A design example of a dis-
crete planar broadband array is given in Section 4, and conclusions
are drawn in Sec. 5.
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Fig. 1. A continuous sensor array aligned with the � axis.

2. FREQUENCY INVARIANT BEAMFORMING –
CONTINUOUS SENSOR AND SIGNAL

Although the main purpose of this work is to derive a class of
frequency-invariant broadband arrays with a finite number of sen-
sors and discrete signals, we start with the case of continuous sen-
sors and signals, from which we will derive the discrete case.

2.1. One-dimensional Array

Fig. 1 shows a 1-D continuous sensor array. The response of this
linear array is given by� � � � 	 � 
 � �� � �

� � � � � � ��  ! � � � � � $ � �
(1)

where % and
	

are the propagation speed and angle of the imping-
ing signal and ! � � � � �

the frequency response with respect to the
angular frequency

�
and location � . Obviously, in general

� � � � 	 �
is a function of both

�
and

	
, while for a frequency invariant beam-

former, we require that the beam pattern
� � � � 	 �

be independent
of

�
.
Suppose the inverse Fourier transform of ! � � � � �

is
$ � � � ( �

,
i.e. ! � � � � � 
 � �� �

$ � � � ( �
�

� � - / $ ( �
(2)

then we get� � � � 	 � 
 � � �� �
$ � � � ( �

�
� � � � � � ��  

�
� � - / $ � $ ( 5

(3)

Note that
$ � � � ( �

can in general be non-causal, in which case a
causal approximate response can be attained by delaying and trun-
cating

$ � � � ( �
.

Introducing the substitutions
� 6 
 - 8 9 : <= and

� ? 
 �
into

(3), we have� � � 6 � � ? � 
 � � �� �
$ � � � ( �

�
� � - G  

�
� � - H / $ � $ ( 5

(4)

From (4) we see that the beam pattern of a continuous linear ar-
ray can be obtained by first applying a 2-D Fourier transform to$ � � � ( �

and then using the substitutions
� 6 
 - 8 9 : <= and

� ? 
 �
.

The spatio-temporal spectrum of the impinging signal is located
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Fig. 2. A continuous 2-D sensor array in the (x,y) plane.

on the line
� � � � � 	 � � �� of the

� � � � � � �
plane. If

� � � � � � � �
can be expressed as a function of

� � �� � , i.e.
� � � � � � � � � " � � � �� � �

,
where

" � %� �
is the frequency response of a 1-D filter (

%�
is the an-

gular frequency), then the resultant
� � � � ( �

will be independent
of

�
, i.e. frequency-invariant. Thus, we have a new way to design

a frequency-invariant broadband beamformer. Suppose the main
beam of the desired frequency-invariant beam pattern

� � * + - ( �
points to broadside, then the design can be divided into the fol-
lowing steps:
Step 1. From

� � * + - ( �
we obtain the frequency response of a 1-D

filter
" � %� �

with a period of 1 � � 2 �
, which is defined as" � %� � � � � %�� � 2 � �

for
%� 5 6 7 � � 2 � 8 � � 2 � � �

(5)

where
� � 2 �

is a constant. As the main beam is at broadside," � %� � 9 " � %� � ; =� > @ is a lowpass filter.
Step 2. With the substitution

%� � � � �� � � � 2 �
, we obtain%� � � � � � � � � D " � � � �� � � � 2 � �

for
� � F� GH � � � �

for
� � � G �

(6)

where H � � � �
is an arbitrary function with finite value because there

is no signal existing for
� � � G

.
Step 3. Suppose the maximum frequency of the signal of interest
is

� � 2 �
. We apply the following modification to

%� � � � � � � �
to

yield
� � � � � � � �

, the 2-D Fourier transform of the desired responseJ � L � M �
,� � � � � � � � � PQ R G

for
; � � ; S � � 2 �

or
; � � ; S � � 2 � U V%� � � � � � � �

otherwise

W
(7)

This modification guarantees that the resulting
� � � � � � � �

is abso-
lutely integrable and its inverse Fourier transform exists.
Step 4. Lastly, the desired response

J � L � M �
is obtained by the 2-D

inverse Fourier transform of
� � � � � � � �

, which may be analytically
difficult. Hence numerical methods may have to be employed.

If the main beam of the design is to point in the direction
( @ ,

instead of electronically steering the broadside main beam to this
new direction, we can use the substitution

%� � � � � �� � 7 * + - ( @ � � � 2 �
in the broadside main beam design. Thus for a signal from direc-
tion

( @ ,
� � �� � � * + - ( @ , and%� � � � � � � � � " � � � � V� � 7 * + - ( @ � � � 2 � �

for
� � F� G

(8)

will form the main beam pointing to the desired direction. Actually
the broadside main beam design method can be applied directly
to the non-broadside main beam design without any change, In
this case, since the main beam of the desired beam pattern is not
pointing to broadside,

" � %� �
will not be a lowpass filter.

2.2. Two-dimensional Array

Fig. 2 shows a 2-D continuous sensor array in the
� L � ] �

plane.
The response of this continuous array to signal from the direction� ( � ^ �

is given by� � � � ( � ^ � � b b de d f e g h i k l 	 � � � m n 	 p q r 	 � � � 	 � � p s uu v � L � ] � � � J L J ] �
(9)

where v � L � ] � � �
is the frequency response of the sensor at point� L � ] �

. Similarly, using the inverse Fourier transform
J � L � ] � M �

ofv � L � ] � � �
, we have� � � � ( � ^ � � b b b de d J � L � ] � M � f e g h z | } ~ � � z �i l uu f e g h z | } ~ z | } �i r f e g � � J L J ] J M W

(10)

The substitution of
� � � � 	 � � � m n 	 p� ,

� � � � 	 � � � 	 � � p� and
� � ��

into (10) results in� � � � � � � � � � � � b b b de d J � L � ] � M � f e g � � l u
u f e g � � r f e g � � � J L J ] J M �

(11)

i.e.
� � � � � � � � � � �

is the 3-D Fourier transform of
J � L � ] � M �

. In
this case, the spatio-temporal spectrum of the impinging signal lies
on the lines

� � �� � � * + - ( � � * ^
and

� � �� � � * + - ( * + - ^
. If we can

express
� � � � � � � � � � � � " � � � �� � � � � �� � �

, where
" � %� � � %� � �

is the
frequency response of a 2-D filter, then the resulting

� � � � ( � ^ �
will be frequency-invariant. Analogously to the 1-D design in
Sec. 2.1, the frequency-invariant beamformer for 2-D case can be
designed as follows:
Step 1. Suppose

� � * + - ( � � * ^ � * + - ( * + - ^ �
is the desired beam

pattern with the main beam pointing towards broadside, then over
one period

%� � 5 6 7 � � 2 � 8 � � 2 � �
and

%� � 5 6 7 � � 2 � 8 � � 2 � �
, the

2-D periodic filter
" � %� � � %� � �

is defined as" � %� � � %� � � � � � %� �� � 2 � � %� �� � 2 � � �
(12)

where
� � 2 �

and
� � 2 �

are constants and
" � %� � � %� � �

is a lowpass
filter.
Step 2. The substitutions

%� � � � � �� � � � 2 �
and

%� � � � � �� � � � 2 �
yield%� � � � � � � � � � � � D " � � � �� � � � 2 � � � � �� � � � 2 � �

for
� � F� GH � � � � � � �

for
� � � G �

(13)

where H � � � � � � �
is an arbitrary function with finite values.

Step 3. Suppose the maximum frequency of the interested signal
is

� � 2 �
. We define

� � � � � � � � � � � � P��Q
��R

G
for

; � � ; S � � 2 �
or

; � � ; S � � 2 � U V
or

; � � ; S � � 2 � U V �%� � � � � � � � � � �
otherwise.

(14)

This modification of
%� � � � � � � � � � �

has the same effect as in the
1-D case.
Step 4. To obtain the desired response

J � L � ] � M �
, we apply a 3-D

inverse Fourier transform to
� � � � � � � � � � �

. As in the 1-D case,
we may also need to delay and truncate the result to get its causal
approximation.

If the main beam is desired to point towards
� ( @ � ^ @ �

, the
substitutions

%� � � � � � �� � 7 * + - ( @ � � * ^ @ � � � 2 �
,

%� � � � � � �� � 7* + - ( @ * + - ^ @ � � � 2 �
can be applied to the broadside main beam

design while all other design parameters remain unchanged.

2.3. Three-dimensional Array

The response of a 3-D continuous sensor array, which in addition
to Fig. 2 also extends in � direction, is given by� � � � ( � ^ � � � � � � d e d J � L � ] � � � M � f e g h z | } ~ � � z �i l uu f e g h z | } ~ z | } �i r f e g h � � z ~i � f e g � � J L J ] J � J M W

(15)
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Here, the substitutions
� � � � � 	 
 � 
 � � �� ,

� � � � � 	 
 � � 	 
 �� ,
� � �� 
 � � �� and

� � � �
lead to� ! � � # � � # � � # � � ) � * * * * , - , . ! 0 # 1 # 2 # 3 )

5
- 7 � 8 9 :

:
5

- 7 � < >
5

- 7 � A B
5

- 7 � C D . 0 . 1 . 2 . 3 E
(16)

By these substitutions, the spatio-temporal spectrum of the im-
pinging signal falls onto the lines

� 8 �� C � G H J K L M G N
,

� < �� C �G H J K G H J N
and

� A �� C � L M G K
, respectively. To design a frequency-

invariant 3-D broadband array, the methods from Secs. 2.1 and 2.2
can be further extended. The procedure is analogous to the previ-
ous design steps and is omitted here.

3. FREQUENCY INVARIANT BEAMFORMING –
DISCRETE SENSOR AND SIGNAL

Having established the theory for continuous sensor and signal, the
aim is to extend the design to the discrete case. In general, this can
be regarded as an approximation to the ideal response obtained for
the continuous case, i.e. the

. ! 0 # 3 )
or

. ! 0 # 1 # 3 )
resulting from the

proposed method need to be sampled and truncated according to
the sensor pattern and the temporal processing structure. However,
for a special class of sensor patterns, where all the sensors are
positioned on lines parallel to the 0 axis (1-D array), 0 and

1
axes

(2-D), or 0 ,
1

and 2 axes (3-D) and equispaced in each of the
three directions, a corresponding theory can be developed based on
the Fourier transform of a discrete series rather than a continuous
function.

3.1. One-dimensional Array

Suppose the sensor spacing is
. 9 and the signal sampling period isR

. Corresponding to (3) of the continuous case, we have� ! � # K ) � ,S
T U V W - ,

. Y Z # \ ]
5

- 7 T ^ _ a b cd f g
5

- 7 V � h #
(17)

where
. Y Z # \ ]

is the coefficient in the
\
-th position of the

Z
-th

sensor’s tapped-delay line (TDL). For the same reason as in thei
-D continuous case,

. Y Z # \ ]
is in general non-causal.

To avoid aliasing in both the spatial and temporal domains,
R

should be half of the period of the maximum signal frequency of
interest and

. 9 half of its wavelength j T k 9 . Thus we have
. 9 �l m n g� � o R

and
� R � r

, where
r

is the normalised angular
frequency. Without loss of generality, we always assume the same
configuration for the following 2-D and 3-D cases. Therefore, (17)
can be rewritten as� ! � # K ) � ,S

T U V W - ,
. Y Z # \ ]

5
- 7 T t � 	 
 �

5
- 7 V t E

(18)

By substituting
r � � r G H J K

and
r � � r

, (18) yields� ! r � # r � ) � ,S
T U V W - ,

. Y Z # \ ]
5

- 7 T t 8
5

- 7 V t < E
(19)

Now the spatio-temporal spectrum of the impinging signal lies on
the line

r � � r � G H J K
, and again a method can be developed to

obtain a frequency-invariant beam pattern pointing towards broad-
side, comprising the steps below.
Step 1. From the desired beam pattern

� ! G H J K )
we derive the

frequency response of a 1-D filter
} ! ~r )

, which is periodic with� � , defined over one period as} ! ~r ) � � ! ~r � � )
for

~r � Y � � � � ) E
(20)

The obtained
} ! ~r )

is a lowpass filter.
Step 2. With the substitution

~r � t 8t < � , for
! r � # r � ) � Y � � � � )

we have� ! r � # r � ) � � } ! ! r � � r � ) � )
for

r � �� �� ! r � )
for

r � � � #
(21)

where � ! r � )
is an arbitrary function with finite values. Note that� ! r � # r � )

is a function with period of � � .
Step 3. Applying a 2-D inverse Fourier transform to

� ! r � # r � )
results in an infinite support of

. Y Z # \ ]
. As in the continuous case,

it is difficult to obtain result analytically; therefore we can apply
the 2-D inverse DFT as an approximation by sampling

� ! r � # r � )
.

In either case, the resulting
. Y Z # \ ]

needs to be delayed along the\
axis for reasons of causality and to be truncated according to the

number of sensors and the TDL length.
For a main beam in the direction

K � , we can simply employ
the substitution

~r � ! t 8t < � G H J K � ) � .
A similar method has been proposed in [5] to deal with the

case of linear arrays with finite sensors and coefficients. Approach-
ing from the continuous case and the discrete case with infinite
number of sensors and coefficients, we can consider the problem
in [5] as a special case of the proposed class of frequency-invariant
broadband arrays.

3.2. Two-dimensional Array

With spatial indices � and
Z

and the time index
\
, a 2-D array

response is given by� ! � # K # N ) � ,�� U T U V W - ,
. Y � # Z # \ ]

5
- 7 � ^ d f g � 	 
 � 
 � � � :

:
5

- 7 T ^ d f � � 	 
 � � 	 
 �
5

- 7 V � h E
(22)

Assuming
. 9 � . > � l m n g� � o R

, we have� ! � # K # N ) � ,�� U T U V W - ,
. Y � # Z # \ ]

5
- 7 � t � 	 
 � 
 � � � :

:
5

- 7 T t � 	 
 � � 	 
 �
5

- 7 V t E
(23)

Substituting
r � � r G H J K L M G N

,
r � � r G H J K G H J N

and
r � � r

into (23) gives� ! r � # r � # r � ) � ,S� U T U V W - ,
. Y � # Z # \ ]

5
- 7 � t 8

5
- 7 T t <

5
- 7 V t A E

(24)

The spatio-temporal spectrum of the impinging signal in the 2-D
case lies on the lines

t 8t A � G H J K L M G N
and

t <t A � G H J K G H J N
,

respectively. Based on the design of the 2-D continuous array, we
perform the 2-D discrete design case as follows:
Step 1. Suppose

� ! G H J K L M G N # G H J K G H J N )
is the desired beam

pattern pointing towards broadside. Then the 2-D filter
} ! ~r � # ~r � )

with a period of � � is defined as} ! ~r � # ~r � ) � � ! ~r � � � # ~r � � � )
for

! ~r � # ~r � ) � Y � � � � ) #
(25)

which has a 2-D lowpass characteristic.
Step 2. With the substitutions

~r � � t 8t A � and
~r � � t <t A � ,

we obtain
� ! r � # r � # r � )

defined over an interval of one periodr � # r � # r � � Y � � � � )
as� ! r � # r � # r � ) � � } ! ! r � � r � ) � # ! r � � r � ) � )

for
r � �� �� ! r � # r � )

for
r � � � #

(26)

where � ! r � # r � )
is an arbitrary function with finite values.

Step 3. Applying a 3-D inverse Fourier transform (or DFT as
an approximation) to

� ! r � # r � # r � )
returns the desired response
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� � � � � � � 	
. For a causal and practical result, a truncation in the

spatial � and
�

domains and the temporal
�

domain is necessary
with a possible shift in time

�
prior to truncation in order to ensure

causality.
For a main beam in the direction


 � 
 � � 
 �
, we can substitute�� �

and
�� �

in step 2 of the design by

 � �� � � � � � � 
 ! # � � 
 � % and
 � &� � � � � � � 
 � � � � 
 � % , respectively.

3.3. Three-dimensional Array

With spatial indices ( , � , �
, and the TDL index

�
, the response of

a 3-D array is given by) 
 , � � � � � 2 345 6 7 6 8 6 : ; = 3
� � ( � � � � � � 	

>
= @ 5 A C E F G I K C NO P Q R

R
>

= @ 7 A C E F G C E F NO P V
>

= 8 7 A I K C GO P X
>

= @ : Z [ \
(27)

With
� ] 2 � _ 2 � ` 2 a b

,
� 2 , b

, the substitutions
� � 2� � � � � ! # � �

,
� � 2 � � � � � � � � �

,
� k 2 � ! # � �

and
� l 2 �

into
(27) yield) 
 � � � � � � � k � � l � 2 345 6 7 6 8 6 : ; = 3

� � ( � � � � � � 	
>

= @ 5 � � R
R

>
= @ 7 � &

>
= @ 8 � �

>
= @ : � o \

(28)

Base on the above substitutions, a 3-D array with frequency-inva-
riant beam pattern can be developed analogously to the previous
designs, for which we omit the details here.

4. DESIGN EXAMPLE

To show the effectiveness of the proposed method, we give a
simple design example for an equispaced planar array with p q s p q
sensors and a TDL length of p q . Its main beam is to point towards
broadside. The desired frequency-invariant response is given by

) 
 � � � � 2 u
q v

kw
7 6 8 ; = k >

= @ 7 y z { | ~ � � z �
>

= @ 8 y z { | ~ z { | � �
(29)

which is the response of a planar array with uniform weighting to
a signal with frequency

� 2 % . Following the method outlined
in Sec. 3.2, utilising a 3-D inverse DFT we obtain a 4-D beam
pattern, of which some aspects are characterised in Figs. 3 and 4.

The response to a single frequency
� 2 � \ � � % is given in

Fig. 3, while the frequency-invariant property can be appreciated
by a representative slice of the beam pattern at

� 2 p u � �
shown

in Fig. 4. Note that for
� � � \ � � % the beam pattern is almost

frequency-invariant. The reason for the degradation for
� � � \ � � %

is that the sample density of the spatio-temporal spectrum in this
region is lower than that at higher frequencies, and hence cannot
be represented sufficiently when applying inverse DFTs.

5. CONCLUSIONS

A new class of broadband arrays with frequency-invariant beam
patterns has been proposed. It can be applied to arrays with con-
tinuous or discrete sensors and signals. The main advantage of
this method is its simplicity by relying mostly on substitutions and
Fourier transforms. A design example for an equispaced broad-
band planar array has been given, which shows a satisfactory fre-
quency-invariant characteristic over a large range of frequencies.
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Fig. 3. The resulting beam pattern at
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