Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The power of twitter on predicting box office revenues

Jeon, Jooyoung and McSharry, Patrick (2012) The power of twitter on predicting box office revenues. Working paper. UNSPECIFIED. (Unpublished)

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Over the last few years there has been an extraordinary surge of social networking and microblogging services. Twitter is a social network that focuses on social and news media. The Twitter data stream allows access to tweets, timestamps and locations of users. This enables us to capture the trends and patterns of rapidly evolving worldwide events. We use the Twitter data stream for the prediction of consumer preferences in the movie industry and estimate how successful the movie will be in the first and second weekends since its release date. The study provides evidence to suggest that frequencies of contemporaneous tweets and a consensus measure of public sentiment are useful for predicting box-office revenues, implying that any publicity is good publicity in word-of-mouth (WOM) and online viral marketing. Sentiment analysis based on tweets suggests that more extreme sentiment has more impact, and that the more negative the tweets about a movie are, the higher its revenue will be, in contrast with the classic theory of diffusion in news media.