Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Multi-mode coupling wave theory for helically corrugated waveguide

Zhang, Liang and He, Wenlong and Ronald, Kevin and Phelps, Alan D. R. and Whyte, Colin G. and Robertson, Craig W. and Young, Alan R. and Donaldson, Craig R. and Cross, Adrian W. (2012) Multi-mode coupling wave theory for helically corrugated waveguide. IEEE Transactions on Microwave Theory and Techniques, 60 (1). pp. 1-7. ISSN 0018-9480

[img]
Preview
PDF (IEEE_Trans_MTT_Liang_Zhang_vol_60_pp_1-7_2012)
IEEE_Trans_MTT_Liang_Zhang_vol_60_pp1_7_2012.pdf - Preprint

Download (1MB) | Preview

Abstract

Helically corrugated waveguide has been used in various applications such as gyro-backward wave oscillators, gyro-traveling wave amplifier and microwave pulse compressor. A fast prediction of the dispersion characteristic of the operating eigenwave is very important when designing a helically corrugated waveguide. In this paper, multi-mode coupling wave equations were developed based on the perturbation method. This method was then used to analyze a five-fold helically corrugated waveguide used for X-band microwave compression. The calculated result from this analysis was found to be in excellent agreement with the results from numerical simulation using CST Microwave Studio and vector network analyzer measurements.